Addressing Africa’s Pressing Challenges: Anthony and Jeanne Pritzker Family Foundation Gives $1 Million to UCLA’s Congo Basin Institute

The Congo Basin Institute creates a bridge between UCLA and Africa, which is expected to be home to 40% of the world’s population by the end of the century.

UCLA has received a $1 million donation from the Anthony & Jeanne Pritzker Family Foundation to support UCLA’s Congo Basin Institute.

The funds will advance the institute’s core mission of finding sustainable solutions to food and water insecurity, climate change, biodiversity loss, public health concerns and emerging diseases.

“The Anthony & Jeanne Pritzker Family Foundation’s generous gift will help establish UCLA as one of the world’s university leaders in developing solutions to some of Africa’s greatest challenges,” said Thomas Smith, co-director of the institute.  “It also will aid in leveraging efforts such as UCLA’s Sustainable LA Grand Challenge on an international scale

Established in 2015 in Cameroon by UCLA and the International Institute for Tropical Agriculture, the Congo Basin Institute brings together faculty from the UCLA College and four professional schools, two UCLA research institutes and numerous academic departments, as well as leading thinkers from institutions in the U.S., Europe, Asia and Africa. Operating programs in five African countries, the institute creates a bridge between UCLA and Africa, which experts forecast will be home to 40% of the world’s population by the end of the century.

“Our foundation aims to enrich humanity not just for the present, but for generations to come,” said Tony Pritzker, the foundation’s president, and the chairman and CEO of Pritzker Private Capital. “By supporting UCLA’s Congo Basin Institute, we are investing in research that will help sustain the future of our planet.”

The gift furthers the foundation’s commitment to the Centennial Campaign for UCLA, which is scheduled to conclude in December 2019 during UCLA’s 100th anniversary year. Tony Pritzker is a co-chair of the campaign, and in 2018, the foundation gave $10 million to establish the UCLA Pritzker Center for Strengthening Children and Families, a hub for research, prevention and intervention efforts that works to support families so that fewer children are at risk of entering our nation’s child welfare system.

Funds from the gift will be used in part to support UCLA undergraduates and graduate students studying and conducting research in Africa, where they will investigate a variety of critical issues that affect the continent and the planet as a whole.

The Pritzkers’ gift was matched by a $1 million grant from the Global Challenges Research Fund’s Research and Innovation Fund, which is directed by the government of the United Kingdom.

“As UCLA celebrates its centennial and the incredible work accomplished over the last century, this forward-thinking investment in the Congo Basin Institute very much positions UCLA to be a leader in the study of climate change and biodiversity in Africa,” said Scott Waugh, UCLA’s former executive vice chancellor and provost. “The institute gives UCLA a permanent presence in one of the planet’s most biodiverse areas, allowing researchers the opportunity to pioneer solutions to critical challenges that affect the future of humanity. The Pritzker Foundation’s gift extends this important work.”

The Congo Basin Institute’s work aligns on an international scale with the goals of UCLA’s Sustainable LA Grand Challenge, a university-wide research initiative to develop clean energy, local water solutions, and preserve biodiversity in order to transition the Los Angeles region to 100 percent renewable energy, 100 percent local water and enhanced ecosystem health by 2050.

The Congo Basin Institute is supported by UCLA’s Institute of the Environment and Sustainability. It is co-led by UCLA and the International Institute for Tropical Agriculture, with more than a dozen institutional partners from Africa and around the world, including UC Davis and UC Riverside.

For more than a decade, the Anthony & Jeanne Pritzker Family Foundation has been investing in strengthening many of the unique institutions that define Los Angeles. The foundation aims to enrich the community not just for the present, but for generations to come, with a particular focus on medicine, higher education, the environment and the arts. In 2014, the foundation launched the Pritzker Foster Care Initiative to highlight its commitment to supporting transition-age foster youth and the families that care for them.

College Senior José Gonzalez is on a Mission to Understand Autism

L to R – Megan McEvoy, Jose Gonzalez, Gina Poe,

UCLA senior José Gonzalez is on a mission to move the needle on autism research. With the support of COMPASS, his family and his mentors, he is well on his way.

The California native was raised in a small Central Valley town in the heart of the state’s agricultural greenbelt. All five of José’s siblings earned college degrees—a point of great pride for his parents, who were unable to receive an education past the sixth grade.

“My parents always stressed the importance of higher education as the way to move up,” Jose said.

José’s father, originally from Mexico, works as a foreman in the citrus orchards of The Wonderful Company, which provides college scholarships and other incentives for their employees’ children who maintain good GPAs. That financial assistance helped the Gonzalez children pay for college.

In his sophomore year, José began participating in COMPASS and received the Life Sciences Dean’s Award, which provides stipends allowing students to pursue research work rather than work at part-time jobs. He has benefited from the invaluable guidance and mentorship of UCLA faculty and COMPASS co-directors Megan McEvoy and Gina Poe, scientists who have helped José navigate the challenges of a science degree.

Now a senior, José works in the lab of one of the world’s leading autism experts, Dr. Daniel Geschwind, studying genes that regulate developmental pathways integral to brain development. José’s decision to study autism was spurred when his nephew was diagnosed with the disorder, and he says the experience has been transformative.

“Without COMPASS, I would not have had the chance to work in Dr. Geschwind’s lab or be on the career trajectory I’m on now,” he said.

José’s goal is to become a pediatric neurologist with his own lab at a university, much like his mentor, Dr. Geschwind.

 

Photo of artist rendering of SO-2 star.

Einstein’s general relativity theory is questioned but still stands ‘for now,’ team reports

Photo of artist rendering of SO-2 star.

A star known as S0-2 (the blue and green object in this artist’s rendering) made its closest approach to the supermassive black hole at the center of the Milky Way in 2018. Artist’s rendering by Nicolle Fuller/National Science Foundation.

More than 100 years after Albert Einstein published his iconic theory of general relativity, it is beginning to fray at the edges, said Andrea Ghez, UCLA professor of physics and astronomy. Now, in the most comprehensive test of general relativity near the monstrous black hole at the center of our galaxy, Ghez and her research team report July 25 in the journal Science that Einstein’s theory of general relativity holds up.

“Einstein’s right, at least for now,” said Ghez, a co-lead author of the research. “We can absolutely rule out Newton’s law of gravity. Our observations are consistent with Einstein’s theory of general relativity. However, his theory is definitely showing vulnerability. It cannot fully explain gravity inside a black hole, and at some point we will need to move beyond Einstein’s theory to a more comprehensive theory of gravity that explains what a black hole is.”

Einstein’s 1915 theory of general relativity holds that what we perceive as the force of gravity arises from the curvature of space and time. The scientist proposed that objects such as the sun and the Earth change this geometry. Einstein’s theory is the best description of how gravity works, said Ghez, whose UCLA-led team of astronomers has made direct measurements of the phenomenon near a supermassive black hole — research Ghez describes as “extreme astrophysics.”

The laws of physics, including gravity, should be valid everywhere in the universe, said Ghez, who added that her research team is one of only two groups in the world to watch a star known as S0-2 make a complete orbit in three dimensions around the supermassive black hole at the center of the Milky Way. The full orbit takes 16 years, and the black hole’s mass is about 4 million times that of the sun.

The researchers say their work is the most detailed study ever conducted into the supermassive black hole and Einstein’s theory of general relativity.

The key data in the research were spectra that Ghez’s team analyzed last April, May and September as her “favorite star” made its closest approach to the enormous black hole. Spectra, which Ghez described as the “rainbow of light” from stars, show the intensity of light and offer important information about the star from which the light travels. Spectra also show the composition of the star. These data were combined with measurements Ghez and her team have made over the last 24 years.

Spectra — collected at the W.M. Keck Observatory in Hawaii using a spectrograph built at UCLA by a team led by colleague James Larkin — provide the third dimension, revealing the star’s motion at a level of precision not previously attained. (Images of the star the researchers took at the Keck Observatory provide the two other dimensions.) Larkin’s instrument takes light from a star and disperses it, similar to the way raindrops disperse light from the sun to create a rainbow, Ghez said.

“What’s so special about S0-2 is we have its complete orbit in three dimensions,” said Ghez, who holds the Lauren B. Leichtman and Arthur E. Levine Chair in Astrophysics. “That’s what gives us the entry ticket into the tests of general relativity. We asked how gravity behaves near a supermassive black hole and whether Einstein’s theory is telling us the full story. Seeing stars go through their complete orbit provides the first opportunity to test fundamental physics using the motions of these stars.”

Ghez’s research team was able to see the co-mingling of space and time near the supermassive black hole. “In Newton’s version of gravity, space and time are separate, and do not co-mingle; under Einstein, they get completely co-mingled near a black hole,” she said.

“Making a measurement of such fundamental importance has required years of patient observing, enabled by state-of-the-art technology,” said Richard Green, director of the National Science Foundation’s division of astronomical sciences. For more than two decades, the division has supported Ghez, along with several of the technical elements critical to the research team’s discovery. “Through their rigorous efforts, Ghez and her collaborators have produced a high-significance validation of Einstein’s idea about strong gravity.”

Keck Observatory Director Hilton Lewis called Ghez “one of our most passionate and tenacious Keck users.” “Her latest groundbreaking research,” he said, “is the culmination of unwavering commitment over the past two decades to unlock the mysteries of the supermassive black hole at the center of our Milky Way galaxy.”

The researchers studied photons — particles of light — as they traveled from S0-2 to Earth. S0-2 moves around the black hole at blistering speeds of more than 16 million miles per hour at its closest approach. Einstein had reported that in this region close to the black hole, photons have to do extra work. Their wavelength as they leave the star depends not only on how fast the star is moving, but also on how much energy the photons expend to escape the black hole’s powerful gravitational field. Near a black hole, gravity is much stronger than on Earth.

Ghez was given the opportunity to present partial data last summer, but chose not to so that her team could thoroughly analyze the data first. “We’re learning how gravity works. It’s one of four fundamental forces and the one we have tested the least,” she said. “There are many regions where we just haven’t asked, how does gravity work here? It’s easy to be overconfident and there are many ways to misinterpret the data, many ways that small errors can accumulate into significant mistakes, which is why we did not rush our analysis.”

Ghez, a 2008 recipient of the MacArthur “Genius” Fellowship, studies more than 3,000 stars that orbit the supermassive black hole. Hundreds of them are young, she said, in a region where astronomers did not expect to see them.

It takes 26,000 years for the photons from S0-2 to reach Earth. “We’re so excited, and have been preparing for years to make these measurements,” said Ghez, who directs the UCLA Galactic Center Group. “For us, it’s visceral, it’s now — but it actually happened 26,000 years ago!”

This is the first of many tests of general relativity Ghez’s research team will conduct on stars near the supermassive black hole. Among the stars that most interest her is S0-102, which has the shortest orbit, taking 11 1/2 years to complete a full orbit around the black hole. Most of the stars Ghez studies have orbits of much longer than a human lifespan.

Ghez’s team took measurements about every four nights during crucial periods in 2018 using the Keck Observatory — which sits atop Hawaii’s dormant Mauna Kea volcano and houses one of the world’s largest and premier optical and infrared telescopes. Measurements are also taken with an optical-infrared telescope at Gemini Observatory and Subaru Telescope, also in Hawaii. She and her team have used these telescopes both on site in Hawaii and remotely from an observation room in UCLA’s department of physics and astronomy.

Black holes have such high density that nothing can escape their gravitational pull, not even light. (They cannot be seen directly, but their influence on nearby stars is visible and provides a signature. Once something crosses the “event horizon” of a black hole, it will not be able to escape. However, the star S0-2 is still rather far from the event horizon, even at its closest approach, so its photons do not get pulled in.)

Photo of telescope pointing to the sky.

Lasers from the two Keck telescopes point in the direction of the center of our galaxy. Each laser creates an “artificial star” that astronomers can use to correct for the blurring caused by the Earth’s atmosphere. Photo: Ethan Tweedie

Ghez’s co-authors include Tuan Do, lead author of the Science paper, a UCLA research scientist and deputy director of the UCLA Galactic Center Group; Aurelien Hees, a former UCLA postdoctoral scholar, now a researcher at the Paris Observatory; Mark Morris, UCLA professor of physics and astronomy; Eric Becklin, UCLA professor emeritus of physics and astronomy; Smadar Naoz, UCLA assistant professor of physics and astronomy; Jessica Lu, a former UCLA graduate student who is now a UC Berkeley assistant professor of astronomy; UCLA graduate student Devin Chu; Greg Martinez, UCLA project scientist; Shoko Sakai, a UCLA research scientist; Shogo Nishiyama, associate professor with Japan’s Miyagi University of Education; and Rainer Schoedel, a researcher with Spain’s Instituto de Astrofısica de Andalucıa.

The National Science Foundation has funded Ghez’s research for the last 25 years. More recently, her research has also been supported by the W.M. Keck Foundation, the Gordon and Betty Moore Foundation and the Heising-Simons Foundation; as well as Lauren Leichtman and Arthur Levine, and Howard and Astrid Preston.

In 1998, Ghez answered one of astronomy’s most important questions, helping to show that a supermassive black hole resides at the center of our Milky Way galaxy. The question had been a subject of much debate among astronomers for more than a quarter of a century.

A powerful technology that Ghez helped to pioneer, called adaptive optics, corrects the distorting effects of the Earth’s atmosphere in real time. With adaptive optics at Keck Observatory, Ghez and her colleagues have revealed many surprises about the environments surrounding supermassive black holes. For example, they discovered young stars where none was expected to be seen and a lack of old stars where many were anticipated. It’s unclear whether S0-2 is young or just masquerading as a young star, Ghez said.

In 2000, she and colleagues reported that for the first time, astronomers had seen stars accelerate around the supermassive black hole. In 2003, Ghez reported that the case for the Milky Way’s black hole had been strengthened substantially and that all of the proposed alternatives could be excluded.

In 2005, Ghez and her colleagues took the first clear picture of the center of the Milky Way, including the area surrounding the black hole, at Keck Observatory. And in 2017, Ghez’s research team reported that S0-2 does not have a companion star, solving another mystery.

This article originally appeared in the UCLA Newsroom.

Study finds cultural differences in attitudes toward infidelity, jealousy

Photo of father and small son.

The 11 societies studied included the Namibian community of the Himba, where this father and child live. Photo credit: Brooke Scelza.

In cultures where fathers are highly invested in the care of their children, both men and women respond more negatively to the idea of infidelity, a cross-cultural study led by UCLA professor of anthropology Brooke Scelza found.

Jealousy is a well-examined human phenomenon that women and men often experience differently, but the study published this week in Nature Human Behavior also examined cultural differences in the experience of jealousy, by surveying 1,048 men and women from 11 societies on five continents.

Scelza wanted to use established evolutionary science to go beyond the idea that a phenomenon of human behavior is either universal or variable.

“In studying jealousy we find evidence for both,” she said. “Almost everywhere men tend to be more upset than women by sexual infidelity,” she said. “At the same time, cultural factors lead to population-level differences in how infidelity is viewed.”

For example, in places where men are not expected to be as involved in day-to-day care of children, people were less prone to jealousy. And in cultures that are more accepting of what Scelza describes as “concurrent” sexual relationships, responses to questions about jealousy were more muted.

The study harnessed expertise from a dozen researchers who have worked extensively in the populations surveyed. Eight were small-scale societies, including the Himba, a pastoral community in Namibia, and the Tismane, indigenous people of Bolivia. Three populations of respondents were from urban settings, such as Los Angeles, India and Okinawa, Japan.

Researchers used a five-point scale to determine attitudes about infidelity and jealousy.

“Very few people of either sex said that either sexual or emotional infidelity was ‘very good’ but responses of ‘OK’ and ‘good’ were not uncommon,” Scelza said. “What is most interesting is that we were able to not just show that cross-cultural variation in jealous response exists, which by itself is not very surprising, but we were able to explain some of that variation using principles from evolutionary theory about the relative costs and benefits of infidelity, including how common extramarital sex is, and whether men are very involved in child-rearing.”

Another surprising finding of the study was that in the majority of populations studied, both men and women found sexual infidelity more upsetting than emotional infidelity. In only four of the populations, including Los Angeles and Okinawa, a majority of women responded that emotional infidelity was more upsetting. These responses echoed what women surveyed in smaller communities like the Himba and Tsimane reported to researchers — that sexual infidelity leads to fears of loss of paternal support and resources for children.

“Typically, we tend to think that emotional infidelity is more likely to lead to loss of resources, which is why it is thought to be more upsetting to women, but we found the opposite,” Scelza said.

This study is part of a growing body of work over the last decade from social scientists who seek to be more inclusive and not just focus their research on western, educated, industrial, rich and democratic — also known as WEIRD — societies, Scelza said.

“For a long time in psychology there was a tendency to use student samples from U.S. and European universities, and if they found a consistent result, extrapolate that as something that could be a ‘human universal,’” she said. “But there are many reasons to believe that people from WEIRD populations are unlikely to be representative of humanity more generally.”

For example, Scelza’s idea for the study was sparked by her ongoing work with Himba pastoralists living in rural Namibia. In her work on marital and family dynamics she found that both women and men frequently had multiple concurrent sexual partners but still experienced happy marriages.

“Over and over I was told that one could love both their husband and another man, and that in fact, many people would be uninterested in having a spouse who could not attract other partners,” she said. “It made me wonder whether or not people in this culture experienced jealousy at all. It turns out they do, but those findings inspired me to take a broader look at how jealousy is treated around the world, and try to understand where and why people view it differently.”

This article originally appeared in the UCLA Newsroom.

Photo of smoggy Los Angeles skyline

Air quality app influences behavior by linking environment to health

Photo of smoggy Los Angeles skyline

An air quality app prompted a majority of its users to take measures to reduce air pollution’s effects on their health.

Nine out of 10 people worldwide breathe polluted air and 7 million die every year from air pollution, according to the World Health Organization. Air quality mobile applications could mitigate these health risks by educating people and promoting preventive behavioral changes, a UCLA study found.

“I think information can be very powerful to change your behavior,” said the study’s lead author, Magali Delmas, a professor of management at the UCLA Institute of the Environment and Sustainability and the Anderson School of Management.

To test the effectiveness of an air quality app, a team of UCLA researchers created AirForU. Similar to a weather app, AirForU gave users information such as hourly air quality updates, next-day air quality forecasts and seven-day historical averages. Data was taken from the Environmental Protection Agency’s AirNow website.

Sixty-nine percent of the app’s 2,740 users said the app prompted them to take measures to reduce air pollution’s effects on their health, and 58% said they learned new information about the health impacts of air pollution.The researchers tracked how often users checked the app and surveyed them to find out how often they shared air quality information with others.

Engagement was found to be highest among health-conscious users, including those who exercised frequently or had preexisting conditions — such as asthma or heart disease — that can be aggravated by air pollution. These users opened the app one to two more times a week than other users.

Additional motivations such as emails and in-app notifications increased engagement, generating two to three more app visits a week. However, the paper’s authors noted that too many notifications could backfire, annoying users.

As part of an end-of-study feedback survey, researchers measured behavioral changes. The most common actions users took to protect their health were not exercising outdoors when air pollution levels were high (21.7%) and closing windows (20.2%). Their knowledge of air quality rose as well, from 10% in the intake survey to 70% in the exit survey.

The study ran from 2015 to 2017, but it was cut short. “[A] company used lawyers to try to influence the type of information we provided in the app,” the study stated, after “one app user contacted a facility about their toxic releases.” The letter was written by attorneys representing an unidentified company. Though all of the app’s information was publicly available through government sources, UCLA Health decided to remove the app from the store. By that time, the information needed for the study had already been collected.

The researchers suggested increasing transparency about data sourcing and potentially including attorneys in development teams for similar apps.

Maintaining long-term engagement was another challenge. App engagement dropped 90 percent about three months after signup. The paper’s authors suggest it could indicate that users learned enough during that time, or that additional strategies are needed to engage them further.

While users can no longer download AirForU, Delmas and Kohli see potential for future apps to go beyond educating users and promote behavioral change — informing public advocacy to address air pollution through policies and responsible business practices.

“I hope others will learn from what we did to build something that is even more effective,” Delmas said.

This article originally appeared in the UCLA Newsroom.

Physical Sciences Dean Miguel García-Garibay has been elected a 2019 Fellow of the American Chemical Society

Photo of Miguel García-Garibay

Miguel García-Garibay, Dean of the UCLA College Division of Physical Sciences.

Miguel García-Garibay, dean of the UCLA Division of Physical Sciences and professor of chemistry and biochemistry, has been elected a 2019 fellow of the American Chemical Society, the ACS announced.

García-Garibay is a pioneer in research on molecular motion in crystals, molecular machines and green chemistry.

He has earned worldwide recognition in the fields of organic photochemistry, solid-state organic chemistry and physical organic chemistry. García-Garibay studies the interaction of light and molecules in crystals. Light can have enough energy to break and make bonds in molecules, and his research team has shown that crystals offer an opportunity to control the outcome of these chemical reactions. He is interested in the basic science of molecules in crystals.

His research has applications for green chemistry that may lead to the production of specialty chemicals that would be very difficult to produce by traditional methods due to their complex structures, as well as applications for molecular electronics and miniaturized devices. His research group has made advances in the field of artificial molecular machines and amphidynamic crystals, a term García-Garibay invented, referring to crystals built with molecules that have a combination of static and mobile components. His research is funded by the National Science Foundation, among other funding sources.

“I can get a precise picture of the molecules in the crystals, the precise arrangement of atoms, with almost no uncertainty,” García-Garibay said. “This provides a large level of control, which enables us to learn the different principles governing molecular functions at the nanoscale.”

He has won many honors for his research, including selection as a fellow of the American Association for the Advancement of Science, as well as numerous honors from the National Science Foundation and the American Chemical Society. He is a member of the California NanoSystems Institute and the Society for Advancement of Chicanos/Hispanics and Native Americans in Science, among other scholarly organizations.

ACS fellows are nominated by their peers and selected for their outstanding accomplishments in scientific research, education and public service. The 2019 fellows will be honored at a ceremony during the ACS national meeting in San Diego on Aug. 26.

This story originally appeared here.

Mathematician named a Great Immigrant by Carnegie Corporation

Photo of Terence Tao

Terence Tao. Photo Credit: Reed Hutchinson

 

Terence Tao, professor of mathematics, who holds the James and Carol Collins Chair in the UCLA College, has been named by Carnegie Corporation of New York on its 2019 annual list of Great Immigrants — a salute to 38 naturalized citizens who “strengthen America’s economy, enrich our culture and communities, and invigorate our democracy through their lives, their work, and their examples.”

Tao became the first mathematics professor in UCLA history to be awarded the Fields Medal in 2006, often described as the “Nobel Prize in mathematics.” He has earned many other honors, including the National Science Foundation’s Alan T. Waterman Award, the Breakthrough Prize in Mathematics, Royal Society’s 2014 Royal Medal for physical sciences and the Royal Swedish Academy of Sciences’ Crafoord Prize. National Geographic magazine featured him in its “What makes a genius?” May 2017 issue.

Every Fourth of July since 2006, the Carnegie Corporation of New York has sponsored the public awareness initiative to commemorate the legacy of its founder, Scottish immigrant Andrew Carnegie, who believed strongly in both immigration and citizenship.

“As we celebrate these 38 extraordinary individuals, we are reminded of the legacy of our founder, Andrew Carnegie, who showed the country how immigrants contribute to the great, unfinished story that is America,” said Vartan Gregorian, president of Carnegie Corporation of New York.

This article originally appeared in the UCLA Newsroom.

Photo of students on a study abroad program in Scotland.

Early graduation within reach for most bruins

 

Photo of students on a study abroad program in Scotland.

Students on a study abroad program in Scotland. Photo Credit: Michael Le

To her surprise, Qiyuan (Grace) Miao realized during her sophomore year that she could graduate a year early, allowing her to begin graduate school ahead of schedule.

Miao is one of many Bruins who choose to complete their undergraduate degrees in less than the traditional four years. Although on different academic paths, these students all share a common message: With good planning and by taking advantage of UCLA programs designed to reduce time to degree, almost anyone can graduate early.

Miao, who graduated in June, pointed to several opportunities at UCLA that enabled her to get ahead on her coursework and finish her communication degree in three years while still enjoying a full undergraduate experience.

Opportunities start freshman year

UCLA offers two intensive programs to introduce incoming students to campus and academic life: the Freshman Transfer Summer Program in the Academic Advancement Program, for students from underrepresented populations, and the College Summer Institute (CSI). Students in both programs take courses that fulfill graduation requirements, giving them a head start before their first fall quarter even begins.

CSI is where Miao first met with Brian Henry, an academic adviser who helped her map out her academic path — something all undergraduates are encouraged to do at least once a year. In advising sessions, students discuss their academic, personal and career goals and learn about opportunities to enrich their university experience. Academic counselors can also advise students on effective ways to maximize their time to degree if their goal is to graduate early.

Another way Miao optimized her time at UCLA was by taking a Freshman Cluster course, “Frontiers of Aging.” These are year-long general education courses offered on topics such as “Evolution of the Cosmos and Life” and “History of Modern Thought.” Each cluster, over the course of a year, satisfies four general education requirements and the Writing II requirement.

“Clusters are a great way to fulfill a lot of requirements very quickly,” Miao said.

UC’s study-abroad intensives

Graduating early doesn’t require students to sacrifice meaningful experiences outside of the classroom.  Michael Le, who graduated with a bachelor’s degree in neuroscience in winter 2019, one quarter early, was still able to study abroad one summer at the University of Glasgow, where UC offers an intensive three-course physics program over two months.

“I completed all three courses in a mere eight weeks, something that would [normally] take 30 weeks,” Le said. “This is an excellent way to get your study abroad ‘fix’ in and be efficient with course planning.”

Shrey Kakkar, a junior majoring in computer science, is on track to graduate one or two quarters early and said many of his peers could do the same, even in a demanding major like computer science. He credits his fast track to his commitment to enroll in four classes every quarter, plus one summer class.  And he still has had time for other activities such as doing research and working for a startup.

Fitting more into four years

Graduating early isn’t every student’s goal. For some, like Mac Casey, maximizing time to degree meant packing a lot into the traditional four years: He was in the rigorous College Honors program, studied abroad for a year, and graduated in 2016 with degrees in both political science and business economics.

“The faculty at UCLA are excellent, and I loved taking courses – the more courses the better,” Casey said. “I really wanted to learn as much as I could and interact with great faculty and researchers.”

Casey said that accomplishing so much in four years is not out of reach for most students. By choosing courses strategically and enlisting the expertise of his honors academic counselor, he was able to complete all his major requirements and stay on track.

Dean and Vice Provost of Undergraduate Education Patricia Turner said that although UCLA already does an excellent job of graduating students in a timely manner, she will continue to work with her faculty colleagues to develop new opportunities to allow students to graduate on time or early while still having a personalized, fully engaged undergraduate experience.

“A student’s undergraduate years are the perfect time to discover what they’re most passionate about,” Turner said. “Students who take advantage of credit-earning opportunities such as service learning, civic engagement and entrepreneurship often find themselves on career paths they otherwise might not have discovered. And because of the way these programs are designed, students can still graduate in four years or less.”

Photo of Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed.

Creating electricity from snowfall and making hydrogen cars affordable

Photo of Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed.

Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed. Photo credit: Reed Hutchinson

Professor Richard Kaner and researcher Maher El-Kady have designed a series of remarkable devices. Their newest one creates electricity from falling snow. The first of its kind, this device is inexpensive, small, thin and flexible like a sheet of plastic.

“The device can work in remote areas because it provides its own power and does not need batteries,” said Kaner, the senior author who holds the Dr. Myung Ki Hong Endowed Chair in Materials Innovation.“It’s a very clever device — a weather station that can tell you how much snow is falling, the direction the snow is falling and the direction and speed of the wind.”

The researchers call it a snow-based triboelectric nanogenerator, or snow TENG. Findings about the device are published in the journal Nano Energy.

The device generates charge through static electricity. Static electricity occurs when you rub fur and a piece of nylon together and create a spark, or when you rub your feet on a carpet and touch a doorknob.

“Static electricity occurs from the interaction of one material that captures electrons and another that gives up electrons,” said Kaner, who is also a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and a member of the California NanoSystems Institute at UCLA. “You separate the charges and create electricity out of essentially nothing.”

Snow is positively charged and gives up electrons. Silicone — a synthetic rubber-like material that is composed of silicon atoms and oxygen atoms, combined with carbon, hydrogen and other elements — is negatively charged. When falling snow contacts the surface of silicone, that produces a charge that the device captures, creating electricity.

“Snow is already charged, so we thought, why not bring another material with the opposite charge and extract the charge to create electricity?” said El-Kady, assistant researcher of chemistry and biochemistry.

“After testing a large number of materials including aluminum foils and Teflon, we found that silicone produces more charge than any other material,” he said.

Approximately 30 percent of the Earth’s surface is covered by snow each winter, El-Kady noted, during which time solar panels often fail to operate. The accumulation of snow reduces the amount of sunlight that reaches the solar array, limiting their power output and rendering them less effective. The new device could be integrated into solar panels to provide a continuous power supply when it snows.

The device can be used for monitoring winter sports, such as skiing, to more precisely assess and improve an athlete’s performance when running, walking or jumping, Kaner said. It could usher in a new generation of self-powered wearable devices for tracking athletes and their performances. It can also send signals, indicating whether a person is moving.

The research team used 3-D printing to design the device, which has a layer of silicone and an electrode to capture the charge. The team believes the device could be produced at low cost given “the ease of fabrication and the availability of silicone,” Kaner said.

New device can create and store energy

Kaner, El-Kady and colleagues designed a device in 2017 that can use solar energy to inexpensively and efficiently create and store energy, which could be used to power electronic devices, and to create hydrogen fuel for eco-friendly cars.

The device could make hydrogen cars affordable for many more consumers because it produces hydrogen using nickel, iron and cobalt — elements that are much more abundant and less expensive than the platinum and other precious metals that are currently used to produce hydrogen fuel.

“Hydrogen is a great fuel for vehicles: It is the cleanest fuel known, it’s cheap and it puts no pollutants into the air — just water,” Kaner said. “And this could dramatically lower the cost of hydrogen cars.”

The technology could be part of a solution for large cities that need ways to store surplus electricity from their electrical grids. “If you could convert electricity to hydrogen, you could store it indefinitely,” Kaner said.

Kaner is among the world’s most influential and highly cited scientific researchers. He has also been selected as the recipient of the  American Institute of Chemists 2019 Chemical Pioneer Award, which honors chemists and chemical engineers who have made outstanding contributions that advance the science of chemistry or greatly impact the chemical profession.

Co-authors on the snow TENG work include Abdelsalam Ahmed, who conducted the research while completing his Ph.D. at the University of Toronto, and Islam Hassan and Ravi Selvaganapathy at Canada’s McMaster University, as well as James Rusling, who is the Paul Krenicki professor of chemistry at the University of Connecticut, and his research team.

More devices designed to solve pressing problems

Last year, Kaner and El-Kady published research on their design of the first fire-retardant, self-extinguishing motion sensor and power generator, which could be embedded in shoes or clothing worn by firefighters and others who work in harsh environments.

Kaner’s lab produced a separation membrane that separates oil from water and cleans up the debris left by oil fracking. The separation membrane is currently in more than 100 oil installations worldwide. Kaner conducted this work with Eric Hoek, professor of civil and environmental engineering.

Laure Murat roils the #MeToo debate in France

Photo of Laure Murat

Laure Murat. Photo: Courtesy of Laure Murat

In a recent book, Director of the UCLA Center for European and Russian Studies Laure Murat argues that #MeToo is the first serious challenge to patriarchy in modern times, and dismisses the current discussion of #MeToo in France as a polemical misdirection. Instead, she calls for a genuine debate on the issues of sexual harassment and assault that engages French young people, men and women, philosophers and intellectuals.

Born and raised in Paris, Murat is a well-known independent author and intellectual in France, but has lived and worked in the United States for the last 12 years, where she is a UCLA professor of French and Francophone studies. As a result, she has a unique perspective on #MeToo and its divergent receptions in the United States and France.

Focusing on the issues

Her book, Une révolution sexuelle? Réflexions sur l’après-Weinstein [A Sexual Revolution? Reflections on the Weinstein Aftermath], has fueled an ongoing rancorous debate about #MeToo in France, with Muratappearing on leading French television and radio shows to discuss the book, while also being interviewed by multiple French newspapers and online publications.

To give American readers an idea of the nature of the debate in France, some 100 well-known French women — including actress Catherine Deneuve — published an open letter in the left-leaning Le Monde that rejected the #MeToo movement and defended men’s “freedom to pester.”

The month before Une révolution sexuelle? was released, French journalist Eugénie Bastié of the conservative Le Figaro newspaper published Le Porc Émissaire: Terreur ou contre-révolution? [Blame the Pig: Terror or Counter-Revolution?], which decries the #MeToo movement for its supposed encouragement of victimization. Rightly or wrongly, one sentence in Bastié’s book has become emblematic of the French critique of #MeToo: “Une main aux fesses n’a jamais tué personne, contrairement aux bonnes intentions qui pavent l’enfer des utopies [A hand on someone’s ass never killed anyone, contrary to the good intentions that pave utopian hells].”

In fact, the views of Murat and Bastié were compared by Elisabeth Philippe of Bibliobs in an article titled Où vont les femmes après #MeToo? Le match Eugénie Bastié – Laure Murat [Where are women headed after #MeToo? The Eugénie Bastié – Laure Murat Competition].

Renewed dialogue for the young generation

Murat argues that polemics are preventing a real debate on the issues of sexual harassment and assault in France, as made clear in a translation of En France, #MeToo est réduit à une caricature pour éviter le débat [In France, #MeToo is being reduced to a caricature to avoid debate], a Mediapart.fr interview conducted by Marine Turchi:

Today, one could say that France is the country of the non-debate. I am struck by the intellectual void and the deliberate desire of the media to extinguish the issues by means of false polemics.

Instead of posing good questions, they rekindle the war of the sexes and clichés of “hysterical feminists” and “poor men,” they invoke masculinity and the freedom to pester, they feel sorry for men who sexually harass women on the subway, they discuss the excesses and possible ambiguities of #MeToo while they haven’t begun to discuss the heart of the problem. They oppose X and Y, right and left, for and against. …

Far from reanimating the war of the sexes, the #MeToo movement is, on the contrary, an exciting opportunity to understand and resolve the gulf between men and women, the gaps in consent, the sufferings of misunderstood sexuality, the logic of domination and abuse of power that poison personal and professional relationships. It’s the promise of renewed dialogue for the young generation. I really like the proposal of Gloria Steinem: eroticize equality (in other words, not violence and oppression).

The #MeToo debate is far from over in either the United States or France. Murat’s book offers new perspectives as the conversation continues.

Visit https://ucla.in/2J6rUZy to read this article with links to the letters, interviews and news coverage mentioned.