Posts

Physical Sciences Dean Miguel García-Garibay has been elected a 2019 Fellow of the American Chemical Society

Photo of Miguel García-Garibay

Miguel García-Garibay, Dean of the UCLA College Division of Physical Sciences.

Miguel García-Garibay, dean of the UCLA Division of Physical Sciences and professor of chemistry and biochemistry, has been elected a 2019 fellow of the American Chemical Society, the ACS announced.

García-Garibay is a pioneer in research on molecular motion in crystals, molecular machines and green chemistry.

He has earned worldwide recognition in the fields of organic photochemistry, solid-state organic chemistry and physical organic chemistry. García-Garibay studies the interaction of light and molecules in crystals. Light can have enough energy to break and make bonds in molecules, and his research team has shown that crystals offer an opportunity to control the outcome of these chemical reactions. He is interested in the basic science of molecules in crystals.

His research has applications for green chemistry that may lead to the production of specialty chemicals that would be very difficult to produce by traditional methods due to their complex structures, as well as applications for molecular electronics and miniaturized devices. His research group has made advances in the field of artificial molecular machines and amphidynamic crystals, a term García-Garibay invented, referring to crystals built with molecules that have a combination of static and mobile components. His research is funded by the National Science Foundation, among other funding sources.

“I can get a precise picture of the molecules in the crystals, the precise arrangement of atoms, with almost no uncertainty,” García-Garibay said. “This provides a large level of control, which enables us to learn the different principles governing molecular functions at the nanoscale.”

He has won many honors for his research, including selection as a fellow of the American Association for the Advancement of Science, as well as numerous honors from the National Science Foundation and the American Chemical Society. He is a member of the California NanoSystems Institute and the Society for Advancement of Chicanos/Hispanics and Native Americans in Science, among other scholarly organizations.

ACS fellows are nominated by their peers and selected for their outstanding accomplishments in scientific research, education and public service. The 2019 fellows will be honored at a ceremony during the ACS national meeting in San Diego on Aug. 26.

This story originally appeared here.

Mathematician named a Great Immigrant by Carnegie Corporation

Photo of Terence Tao

Terence Tao. Photo Credit: Reed Hutchinson

 

Terence Tao, professor of mathematics, who holds the James and Carol Collins Chair in the UCLA College, has been named by Carnegie Corporation of New York on its 2019 annual list of Great Immigrants — a salute to 38 naturalized citizens who “strengthen America’s economy, enrich our culture and communities, and invigorate our democracy through their lives, their work, and their examples.”

Tao became the first mathematics professor in UCLA history to be awarded the Fields Medal in 2006, often described as the “Nobel Prize in mathematics.” He has earned many other honors, including the National Science Foundation’s Alan T. Waterman Award, the Breakthrough Prize in Mathematics, Royal Society’s 2014 Royal Medal for physical sciences and the Royal Swedish Academy of Sciences’ Crafoord Prize. National Geographic magazine featured him in its “What makes a genius?” May 2017 issue.

Every Fourth of July since 2006, the Carnegie Corporation of New York has sponsored the public awareness initiative to commemorate the legacy of its founder, Scottish immigrant Andrew Carnegie, who believed strongly in both immigration and citizenship.

“As we celebrate these 38 extraordinary individuals, we are reminded of the legacy of our founder, Andrew Carnegie, who showed the country how immigrants contribute to the great, unfinished story that is America,” said Vartan Gregorian, president of Carnegie Corporation of New York.

This article originally appeared in the UCLA Newsroom.

Photo of Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed.

Creating electricity from snowfall and making hydrogen cars affordable

Photo of Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed.

Richard Kaner, with Maher El-Kady, holding a replica of an energy storage and conversion device the pair developed. Photo credit: Reed Hutchinson

Professor Richard Kaner and researcher Maher El-Kady have designed a series of remarkable devices. Their newest one creates electricity from falling snow. The first of its kind, this device is inexpensive, small, thin and flexible like a sheet of plastic.

“The device can work in remote areas because it provides its own power and does not need batteries,” said Kaner, the senior author who holds the Dr. Myung Ki Hong Endowed Chair in Materials Innovation.“It’s a very clever device — a weather station that can tell you how much snow is falling, the direction the snow is falling and the direction and speed of the wind.”

The researchers call it a snow-based triboelectric nanogenerator, or snow TENG. Findings about the device are published in the journal Nano Energy.

The device generates charge through static electricity. Static electricity occurs when you rub fur and a piece of nylon together and create a spark, or when you rub your feet on a carpet and touch a doorknob.

“Static electricity occurs from the interaction of one material that captures electrons and another that gives up electrons,” said Kaner, who is also a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and a member of the California NanoSystems Institute at UCLA. “You separate the charges and create electricity out of essentially nothing.”

Snow is positively charged and gives up electrons. Silicone — a synthetic rubber-like material that is composed of silicon atoms and oxygen atoms, combined with carbon, hydrogen and other elements — is negatively charged. When falling snow contacts the surface of silicone, that produces a charge that the device captures, creating electricity.

“Snow is already charged, so we thought, why not bring another material with the opposite charge and extract the charge to create electricity?” said El-Kady, assistant researcher of chemistry and biochemistry.

“After testing a large number of materials including aluminum foils and Teflon, we found that silicone produces more charge than any other material,” he said.

Approximately 30 percent of the Earth’s surface is covered by snow each winter, El-Kady noted, during which time solar panels often fail to operate. The accumulation of snow reduces the amount of sunlight that reaches the solar array, limiting their power output and rendering them less effective. The new device could be integrated into solar panels to provide a continuous power supply when it snows.

The device can be used for monitoring winter sports, such as skiing, to more precisely assess and improve an athlete’s performance when running, walking or jumping, Kaner said. It could usher in a new generation of self-powered wearable devices for tracking athletes and their performances. It can also send signals, indicating whether a person is moving.

The research team used 3-D printing to design the device, which has a layer of silicone and an electrode to capture the charge. The team believes the device could be produced at low cost given “the ease of fabrication and the availability of silicone,” Kaner said.

New device can create and store energy

Kaner, El-Kady and colleagues designed a device in 2017 that can use solar energy to inexpensively and efficiently create and store energy, which could be used to power electronic devices, and to create hydrogen fuel for eco-friendly cars.

The device could make hydrogen cars affordable for many more consumers because it produces hydrogen using nickel, iron and cobalt — elements that are much more abundant and less expensive than the platinum and other precious metals that are currently used to produce hydrogen fuel.

“Hydrogen is a great fuel for vehicles: It is the cleanest fuel known, it’s cheap and it puts no pollutants into the air — just water,” Kaner said. “And this could dramatically lower the cost of hydrogen cars.”

The technology could be part of a solution for large cities that need ways to store surplus electricity from their electrical grids. “If you could convert electricity to hydrogen, you could store it indefinitely,” Kaner said.

Kaner is among the world’s most influential and highly cited scientific researchers. He has also been selected as the recipient of the  American Institute of Chemists 2019 Chemical Pioneer Award, which honors chemists and chemical engineers who have made outstanding contributions that advance the science of chemistry or greatly impact the chemical profession.

Co-authors on the snow TENG work include Abdelsalam Ahmed, who conducted the research while completing his Ph.D. at the University of Toronto, and Islam Hassan and Ravi Selvaganapathy at Canada’s McMaster University, as well as James Rusling, who is the Paul Krenicki professor of chemistry at the University of Connecticut, and his research team.

More devices designed to solve pressing problems

Last year, Kaner and El-Kady published research on their design of the first fire-retardant, self-extinguishing motion sensor and power generator, which could be embedded in shoes or clothing worn by firefighters and others who work in harsh environments.

Kaner’s lab produced a separation membrane that separates oil from water and cleans up the debris left by oil fracking. The separation membrane is currently in more than 100 oil installations worldwide. Kaner conducted this work with Eric Hoek, professor of civil and environmental engineering.

4d graphic rendering of iron-platinum nanoparticle

Atomic motion is captured in 4D for the first time

4d graphic rendering of iron-platinum nanoparticle

The image shows 4D atomic motion captured in an iron-platinum nanoparticle at three different times.
Credit: Alexander Tokarev

Results of UCLA-led study contradict a long-held classical theory

Everyday transitions from one state of matter to another — such as freezing, melting or evaporation — start with a process called “nucleation,” in which tiny clusters of atoms or molecules (called “nuclei”) begin to coalesce. Nucleation plays a critical role in circumstances as diverse as the formation of clouds and the onset of neurodegenerative disease.

A UCLA-led team has gained a never-before-seen view of nucleation — capturing how the atoms rearrange at 4D atomic resolution (that is, in three dimensions of space and across time). The findings, published in the journal Nature, differ from predictions based on the classical theory of nucleation that has long appeared in textbooks.

“This is truly a groundbreaking experiment — we not only locate and identify individual atoms with high precision, but also monitor their motion in 4D for the first time,” said senior author Jianwei “John” Miao, a UCLA professor of physics and astronomy, who is the deputy director of the STROBE National Science Foundation Science and Technology Center and a member of the California NanoSystems Institute at UCLA.

Research by the team, which includes collaborators from Lawrence Berkeley National Laboratory, University of Colorado at Boulder, University of Buffalo and the University of Nevada, Reno, builds upon a powerful imaging techniquepreviously developed by Miao’s research group. That method, called “atomic electron tomography,” uses a state-of-the-art electron microscope located at Berkeley Lab’s Molecular Foundry, which images a sample using electrons. The sample is rotated, and in much the same way a CAT scan generates a three-dimensional X-ray of the human body, atomic electron tomography creates stunning 3D images of atoms within a material.

Miao and his colleagues examined an iron-platinum alloy formed into nanoparticles so small that it takes more than 10,000 laid side by side to span the width of a human hair. To investigate nucleation, the scientists heated the nanoparticles to 520 degrees Celsius, or 968 degrees Fahrenheit, and took images after 9 minutes, 16 minutes and 26 minutes. At that temperature, the alloy undergoes a transition between two different solid phases.

Although the alloy looks the same to the naked eye in both phases, closer inspection shows that the 3D atomic arrangements are different from one another. After heating, the structure changes from a jumbled chemical state to a more ordered one, with alternating layers of iron and platinum atoms. The change in the alloy can be compared to solving a Rubik’s Cube — the jumbled phase has all the colors randomly mixed, while the ordered phase has all the colors aligned.

In a painstaking process led by co-first authors and UCLA postdoctoral scholars Jihan Zhou and Yongsoo Yang, the team tracked the same 33 nuclei — some as small as 13 atoms — within one nanoparticle.

“People think it’s difficult to find a needle in a haystack,” Miao said. “How difficult would it be to find the same atom in more than a trillion atoms at three different times?”

The results were surprising, as they contradict the classical theory of nucleation. That theory holds that nuclei are perfectly round. In the study, by contrast, nuclei formed irregular shapes. The theory also suggests that nuclei have a sharp boundary. Instead, the researchers observed that each nucleus contained a core of atoms that had changed to the new, ordered phase, but that the arrangement became more and more jumbled closer to the surface of the nucleus.

Classical nucleation theory also states that once a nucleus reaches a specific size, it only grows larger from there. But the process seems to be far more complicated than that: In addition to growing, nuclei in the study shrunk, divided and merged; some dissolved completely.

“Nucleation is basically an unsolved problem in many fields,” said co-author Peter Ercius, a staff scientist at the Molecular Foundry, a nanoscience facility that offers users leading-edge instrumentation and expertise for collaborative research. “Once you can image something, you can start to think about how to control it.”

The findings offer direct evidence that classical nucleation theory does not accurately describe phenomena at the atomic level. The discoveries about nucleation may influence research in a wide range of areas, including physics, chemistry, materials science, environmental science and neuroscience.

“By capturing atomic motion over time, this study opens new avenues for studying a broad range of material, chemical and biological phenomena,” said National Science Foundation program officer Charles Ying, who oversees funding for the STROBE center. “This transformative result required groundbreaking advances in experimentation, data analysis and modeling, an outcome that demanded the broad expertise of the center’s researchers and their collaborators.”

Other authors were Yao Yang, Dennis Kim, Andrew Yuan and Xuezeng Tian, all of UCLA; Colin Ophus and Andreas Schmid of Berkeley Lab; Fan Sun and Hao Zeng of the University at Buffalo in New York; Michael Nathanson and Hendrik Heinz of the University of Colorado at Boulder; and Qi An of the University of Nevada, Reno.

The research was primarily supported by the STROBE National Science Foundation Science and Technology Center, and also supported by the U.S. Department of Energy.

This story originally appeared in the UCLA Newsroom.

Andrea Ghez, Lauren B. Leichtman & Arthur E. Levine Chair in Astrophysics at UCLA, receiving an honorary doctorate from Oxford University on June 26, 2019. Ghez is with her sons.

UCLA astronomer receives honorary degree from Oxford

By Lisa Garibay

Andrea Ghez, Lauren B. Leichtman & Arthur E. Levine Chair in Astrophysics at UCLA, receiving an honorary doctorate from Oxford University on June 26, 2019. Ghez is with her sons.

UCLA’s Andrea Ghez with her sons at Oxford University.

Andrea Ghez, distinguished professor of physics and astronomy and director of UCLA’s Galactic Center Group, was awarded an honorary degree today from Oxford University during its annual Encaenia ceremony.

Ghez demonstrated the existence of a supermassive black hole at the center of our galaxy, with a mass 4 million times that of our sun. Her work provided the best evidence yet that these exotic objects really do exist, providing an opportunity to study the fundamental laws of physics in the extreme environment near a black hole, and learn what role this black hole has played in the formation and evolution of our galaxy.

She joins an eclectic group including cellist Yo-Yo Ma, Nobel laureate Daniel Kahneman, and UC Berkeley professor Jennifer Doudna, who developed the CRISPR-Cas9 technology for gene editing.

Ghez, who is the Lauren B. Leichtman & Arthur E. Levine Chair in Astrophysics, earned her bachelor’s degree in physics from MIT in 1987 and her doctorate from Caltech in 1992, and has been on the faculty at UCLA since 1994.

This article was originally published on the UCLA Newsroom.

Bruin Space team members Chloe Liau, Andrew Evans, and Alexander Gonzalez holding their final flight model.

UCLA students touch space with a microgravity experiment

Bruin Space team members Chloe Liau, Andrew Evans, and Alexander Gonzalez holding their final flight model.

Bruin Space team members Chloe Liau, Andrew Evans, and Alexander Gonzalez holding their final flight model. Credit: Andrew Evans/Bruin Space

Magnetic pump built by Bruin Space launches on Blue Origin reusable rocket

It took only 10 minutes and a ride aboard the Blue Origin New Shepard reusable rocket for 11 students in the Bruin Spacecraft Group to make history.

At 6:32 a.m. on May 2, their experimental pump designed for use in zero-gravity environments, named “Blue Dawn,” completed its flight into a low-Earth orbit and freefall — thereby becoming the first space payload developed and built entirely by a UCLA student group.

“The goal was to see if we could design an efficient fluid pump without any moving parts to work in zero-gravity, which has never been done before,” said Alexander Gonzalez, fourth-year physics major and undergrad science lead on the project. Such a low-maintenance pump would be ideal for moving various liquids on the International Space Station, and could reduce the risk of motorized pump failures for rovers and even future bases on the moon or Mars.

The New Shepard rocket roared into the deep blue West Texas sky, ferrying a suite of 38 separate microgravity research experiments, including two built by student groups at UCLA and Case Western Reserve University.

For Blue Dawn, the UCLA team had to design a system containing the fluid, pump tubing, magnets and electronics in a custom aluminum frame that was about the size of a football and with a maximum weight of one pound.

Work began on the project in fall 2017. After designing it, the team of 11 students from several majors then manufactured and tested the pump entirely on campus. The Bruin Spacecraft Group, known as Bruin Space, secured primary funding for their project in 2017 by winning a grant from the American Society for Gravitational and Space Research Ken Souza Spaceflight Competition.

“It’s super exciting to directly apply the knowledge we gained in classes and actually build something that went into space,” said Andrew Evans, a third-year majoring in mechanical and aerospace engineering and who served as chief engineer. He stressed the value of hands-on team experience gained in such projects.

“That’s what Bruin Space is all about, solving real science questions while giving students an opportunity to fulfill their dreams of spaceflight,” Evans said.

To be judged a success, Blue Dawn had to operate fully autonomously during its 10-minute flight and freefall back to Earth. Once the capsule chutes deployed and it touched down softly in the desert, Chloe Liau, fourth-year mechanical and aerospace engineering student and structure/fabrication lead, breathed a sigh of relief.

“Seeing all our hard work pay off with a perfect launch and landing, it was nothing short of amazing,” Liau said. “But we still have a job to finish.”

The payload and flight data will be returned to UCLA this week, so that the team can analyze the pump’s performance in microgravity. They expect the flow in space to be more efficient compared to its performance in ground tests under the influence of gravity.

The team plans to publish the results of this first study and present at conferences, giving these students the experience of seeing a space mission end-to-end.

Team members said that it would not have been possible without the expert guidance of two geophysics and space physics Ph.D. students from the UCLA Department of Earth, Planetary and Space Sciences: science advisor Emily Hawkins and project manager Lydia Bingley. The group was also supported by Richard Wirz, professor of mechanical and aerospace engineering in the UCLA Samueli School of Engineering, and Chris Russell, professor of Earth, planetary and space sciences, whose prototyping lab facilities were used to build and test Blue Dawn.

What’s next for Bruin Space?

“We have several other exciting projects in development, from weather balloons and rocket campaigns, to designing a microsatellite propulsion system,” Evans said. “We are always looking for new members, check out our website at BruinSpace.com to learn more.”

This article originally appeared on the UCLA Newsroom.

Photo of Dr. Anna Lee Fisher

Dr. Anna Lee Fisher, first mother in space, to deliver 2019 UCLA College centennial commencement address

Photo of Dr. Anna Lee Fisher

Dr. Anna Lee Fisher

Chemist, physician, astronaut and UCLA alumna will speak at Pauley Pavilion, June 14

­

Dr. Anna Lee Fisher, a chemist, physician and member of NASA’s first astronaut class to include women — as well as the first mother in space and a three-time UCLA graduate — will be the distinguished speaker for the UCLA College commencement on Friday, June 14.

Fisher will speak at both commencement ceremonies, which are scheduled for 2 p.m. and 7 p.m., in Pauley Pavilion, as the campus continues the celebration of its centennial year.

“Anna Fisher is an extraordinary illustration of what one person can achieve with determination, focus and hard work,” said Patricia Turner, senior dean of the UCLA College. “She is an example to all Bruins that one can truly reach beyond the stars. I know our graduates and their guests will be inspired by her wonderful journey as we celebrate all that UCLA has accomplished over the past 100 years and look forward to all that is yet to come.”

Fisher was selected by NASA in 1978 to be among the agency’s first female astronauts. In 1983, just two weeks before delivering her daughter, she was assigned to her flight on the space shuttle Discovery, and she embarked on mission STS-51A in 1984 when her daughter was just 14 months old — making her the first mother in space.

She has served NASA in several capacities throughout her career. In addition to serving on space missions, Fisher was the chief of the Astronaut Office’s Space Station branch, where she had a significant role in building the foundation for the International Space Station. She also worked in the mission control center as a lead communicator to the space station.

Before retiring in 2017, Fisher was a management astronaut working on display development for NASA’s pioneering Orion spacecraft, which will take astronauts farther into the solar system than they have ever gone.

Prior to orbiting the Earth, Fisher pushed into new frontiers at UCLA. She earned a bachelor’s degree in chemistry in 1971, an M.D. in 1976, and a master’s in chemistry 1987.

UCLA will hold two centennial commencements — the June 2019 ceremonies help kick off the campus’s 100th year, and the 2020 ceremonies wrap up the yearlong celebration. More information about the ceremonies are available at the UCLA College Commencement website.

New simulations suggest that carbon (C) routinely bonded with iron (Fe), silicon (Si) and oxygen (O) deep within the magma ocean that covered Earth when it was young.

New insights about carbon and ice could clarify inner workings of Earth, other planets

New simulations suggest that carbon (C) routinely bonded with iron (Fe), silicon (Si) and oxygen (O) deep within the magma ocean that covered Earth when it was young.

New simulations suggest that carbon (C) routinely bonded with iron (Fe), silicon (Si) and oxygen (O) deep within the magma ocean that covered Earth when it was young.

 

Most people behave differently when under extreme pressure. Carbon and ice are no different.

Two new studies show how these key planetary ingredients take on exotic forms that could help researchers better understand the composition of Earth’s core as well as the cores of planets across the galaxy. Craig Manning, a UCLA professor of geology and geochemistry, is a co-senior author of one of the papers, which was published today in the journal Nature, and senior author of the other, which was published in Nature Communications in February.

The Nature Communications paper revealed that high pressure deep inside the young Earth may have driven vast stores of carbon into the planet’s core while also setting the stage for diamonds to form. In the Nature report, researchers found that water ice undergoes a complex crystalline metamorphosis as the pressure slowly ratchets up.

Scientists have long understood that the amount of carbon sequestered in present-day Earth’s rocks, oceans and atmosphere is always in flux because the planet shuffles the element around in a vast cycle that helps regulate climate. But researchers don’t know whether the Earth locked away even more carbon deep in its interior during its formative years — information that could reveal a little more about how our planet and others like it are built.

To pursue an answer to that question, Manning and colleagues calculated how carbon might have interacted with other atoms under conditions similar to those that prevailed roughly 4.5 billion years ago, when much of Earth was still molten. Using supercomputers, the team created simulations to explore what would happen to carbon at temperatures above 3,000 degrees Celsius (more than 5,400 degrees Fahrenheit) and at pressures more than 100,000 times of those on Earth’s surface today.

The experiment revealed that under those conditions, carbon tends to link up with iron, which implies that there might be considerable quantities of carbon sealed in Earth’s iron core today. Researchers had already suspected that in the young planet’s magma ocean, iron atoms hooked up with one another and then dropped to the planet’s center. But the new research suggests that this molten iron rain may have also dragged carbon down with it. Until now, researchers weren’t even sure whether carbon exists down there.

The team also found that as the pressure ramps up, carbon increasingly bonds with itself, forming long chains of carbon atoms with oxygen atoms sticking out.

“These complex chains are a form of carbon bonding that we really hadn’t anticipated at these conditions,” Manning said.

Such molecules could be a precursor to diamonds, which consist of many carbon atoms linked together.

Solving an icy enigma

The machinations of carbon under pressure provide clues as to how Earth-like planets are built. Frozen planets and moons in other solar systems, however, may also have to contend with water ice. In a separate paper, Manning and another team of scientists looked at how the molecular structure of extremely cold ice changes when put under intense pressure.

Under everyday conditions, water ice is made up of molecules laid out in honeycomb-like mosaics of hexagons. But when ice is exposed to crushing pressure or very low temperature — in labs or possibly deep inside remote worlds — the molecules can assume a bewildering variety of patterns.

One of those patterns, known as amorphous ice, is an enigma. In amorphous ice, the water molecules eschew rigid crystalline order and take on a free-form arrangement. Manning and colleagues set out to try and understand how amorphous ice forms.

First, they chilled normal ice to about 170 degrees below zero Celsius (about 274 degrees below zero Fahrenheit). Then, they locked the ice in the jaws of a high-tech vice grip inside a cryogenic vacuum chamber. Finally, over the span of several hours, they slowly stepped up the pressure in the chamber to about 15,000 times atmospheric pressure. They stopped raising the pressure periodically to fire neutrons through the ice so that they could see the arrangement of the water molecules.

Surprisingly to the researchers, the amorphous ice never formed. Instead, the molecules went through a series of previously known crystalline arrangements.

However, when the researchers conducted the same experiment but raised the pressure much more rapidly — this time in just 30 minutes — amorphous ice formed as expected. The results suggest that time is the secret ingredient: When pressure increases slowly, tiny seeds of crystalline ice have time to form and take over the sample. Otherwise, those seeds never get a chance to grow.

The findings, published May 23 in the journal Nature, could be useful to researchers who study worlds orbiting other suns and are curious about what conditions might be like deep inside frozen planets.

“It’s entirely likely that there are planets dominated by ice in other solar systems that could obtain these pressures and temperatures with ease,” Manning said. “We have to have this right if we’re going to have a baseline for understanding the interiors of cold worlds that may not be like Earth.”

Both papers were funded in part by the Deep Carbon Observatory, a 10-year program started in 2009 to investigate the quantities, movements, forms and origins of deep carbon inside Earth. The Nature Communications paper was also funded by the European Research Council and was co-authored by researchers at the Ecole Normale Supérieure de Lyon in France, one of whom — Natalia Solomatova — completed her undergraduate studies at UCLA. The Nature paper was co-authored by UCLA geologist Adam Makhluf and researchers from Oak Ridge National Laboratory and the National Research Council of Canada.

This article originally appeared on the UCLA Newsroom.

 

Best in snow: New scientific device creates electricity from snowfall

UCLA researchers and colleagues have designed a new device that creates electricity from falling snow. The first of its kind, this device is inexpensive, small, thin and flexible like a sheet of plastic.

“The device can work in remote areas because it provides its own power and does not need batteries,” said senior author Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation. “It’s a very clever device — a weather station that can tell you how much snow is falling, the direction the snow is falling, and the direction and speed of the wind.”

The researchers call it a snow-based triboelectric nanogenerator, or snow TENG. A triboelectric nanogenerator, which generates charge through static electricity, produces energy from the exchange of electrons.

Findings about the device are published in the journal Nano Energy.

Maher El-Kady and Richard Kaner

Maher El-Kady and Richard Kaner

“Static electricity occurs from the interaction of one material that captures electrons and another that gives up electrons,” said Kaner, who is also a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and a member of the California NanoSystems Institute at UCLA. “You separate the charges and create electricity out of essentially nothing.”

Snow is positively charged and gives up electrons. Silicone — a synthetic rubber-like material that is composed of silicon atoms and oxygen atoms, combined with carbon, hydrogen and other elements — is negatively charged. When falling snow contacts the surface of silicone, that produces a charge that the device captures, creating electricity.

“Snow is already charged, so we thought, why not bring another material with the opposite charge and extract the charge to create electricity?” said co-author Maher El-Kady, a UCLA assistant researcher of chemistry and biochemistry.

“While snow likes to give up electrons, the performance of the device depends on the efficiency of the other material at extracting these electrons,” he added. “After testing a large number of materials including aluminum foils and Teflon, we found that silicone produces more charge than any other material.”

About 30 percent of the Earth’s surface is covered by snow each winter, during which time solar panels often fail to operate, El-Kady noted. The accumulation of snow reduces the amount of sunlight that reaches the solar array, limiting the panels’ power output and rendering them less effective. The new device could be integrated into solar panels to provide a continuous power supply when it snows, he said.

Hiking shoe with device attached

Hiking shoe with device attached

The device can be used for monitoring winter sports, such as skiing, to more precisely assess and improve an athlete’s performance when running, walking or jumping, Kaner said. It also has the potential for identifying the main movement patterns used in cross-country skiing, which cannot be detected with a smart watch.

It could usher in a new generation of self-powered wearable devices for tracking athletes and their performances.

It can also send signals, indicating whether a person is moving. It can tell when a person is walking, running, jumping or marching.

The research team used 3-D printing to design the device, which has a layer of silicone and an electrode to capture the charge. The team believes the device could be produced at low cost given “the ease of fabrication and the availability of silicone,” Kaner said. Silicone is widely used in industry, in products such as lubricants, electrical wire insulation and biomedical implants, and it now has the potential for energy harvesting.

Co-authors include Abdelsalam Ahmed, who conducted the research while completing his doctoral studies at the University of Toronto; Islam Hassan and Ravi Selvaganapathy of Canada’s McMaster University; and James Rusling of the University of Connecticut and his research team.

Kaner’s research was funded by Nanotech Energy, a company spun off from his research (Kaner is chair of its scientific advisory board and El-Kady is chief technology officer); and Kaner’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation.

Kaner’s laboratory has produced numerous devices, including a membrane that separates oil from water and cleans up the debris left by oil fracking. Fracking is a technique to extract gas and oil from shale rock.

Kaner, El-Kady and colleagues designed a device in 2017 that can use solar energy to inexpensively and efficiently create and store energy, which could be used to power electronic devices and to create hydrogen fuel for eco-friendly cars. This year, they published research on their design of the first fire-retardant, self-extinguishing motion sensor and power generator, which could be embedded in shoes or clothing worn by firefighters and others who work in harsh environments.

Kaner is among the world’s most influential and highly cited scientific researchers. He was selected as the recipient of the American Institute of Chemists 2019 Chemical Pioneer Award, which honors chemists and chemical engineers who have made outstanding contributions that advance the science of chemistry or greatly impact the chemical profession.

The galactic chimneys (yellow-orange areas extending vertically) are centered on the supermassive black hole at the center of our galaxy.

Giant X-ray ‘chimneys’ are exhaust vents for vast energies produced at Milky Way’s center

The galactic chimneys (yellow-orange areas extending vertically) are centered on the supermassive black hole at the center of our galaxy.

The galactic chimneys (yellow-orange areas extending vertically) are centered on the supermassive black hole at the center of our galaxy.

 

The center of our galaxy is a frenzy of activity. A behemoth black hole — 4 million times as massive as the sun — blasts out energy as it chows down on interstellar detritus while neighboring stars burst to life and subsequently explode.

Now, an international team of astronomers has discovered two exhaust channels — dubbed “galactic center chimneys” — that appear to funnel matter and energy away from the cosmic fireworks in the Milky Way’s center, about 28,000 light-years from Earth.

Mark Morris, a UCLA professor of astronomy and astrophysics, contributed to the research, which will be published March 21 in the journal Nature.

“We hypothesize that these chimneys are exhaust vents for all the energy released at the center of the galaxy,” Morris said.

All galaxies are giant star-forming factories, but their productivity can vary widely — from one galaxy to the next and even over the course of each galaxy’s lifetime. One mechanism for throttling the rate of star production is the fountain of matter and energy whipped up by the heavyweight black hole that lurks at a galaxy’s center.

“Star formation determines the character of a galaxy,” Morris said. “And that’s something we care about because stars produce the heavy elements out of which planets — and life — are made.”

To better understand what becomes of that outflow of energy, Morris and his colleagues pointed the European Space Agency’s XMM-Newton satellite, which detects cosmic X-rays, toward the center of the Milky Way. Because X-rays are emitted by extremely hot gas, they are especially useful for mapping energetic environments in space.

In images they collected from 2016 to 2018 and in 2012, the researchers found two plumes of X-rays — the galactic center chimneys — stretching in opposite directions from the central hub of the galaxy. Each plume originates within about 160 light-years of the supermassive black hole and spans over 500 light-years.

The chimneys hook up to two gargantuan structures known as the Fermi bubbles, cavities carved out of the gas that envelops the galaxy. The bubbles, which are filled with high-speed particles, straddle the center of the galaxy and stretch for 25,000 light-years in either direction. Some astronomers suspect that the Fermi bubbles are relics of massive eruptions from the supermassive black hole, while others think the bubbles are blown out by hordes of newly born stars. Either way, the chimneys could be the conduits through which high-speed particles get there.

Understanding how energy makes its way from a galaxy’s center to its outer limits could provide insights into why some galaxies are bursting with star formation whereas others are dormant.

“In extreme cases, that fountain of energy can either trigger or shut off star formation in the galaxy,” Morris said.

Our galaxy isn’t quite that extreme — other galaxies have fountains powered by central black holes weighing a thousand times more than ours — but the Milky Way’s center provides an up-close look at what might be happening in galaxies that are more energetic.

“We know that outflows and winds of material and energy emanating from a galaxy are crucial in sculpting and altering that galaxy’s shape over time — they’re key players in how galaxies, and other structures, form and evolve throughout the cosmos,” said lead author Gabriele Ponti of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. “Luckily, our galaxy gives us a nearby laboratory to explore this in detail, and probe how material flows out into the space around us.”

Morris said the centers of the nearest galaxies are hundreds to thousands of times farther away than our own. “The amount of energy coming out of the center of our galaxy is limited, but it’s a really good example of a galactic center that we can observe and try to understand,” he said.

Nine authors from five countries contributed to the study. The research was funded by NASA, the French National Center for Space Studies, the French National Agency for Research, the German Federal Ministry of Economics and Technology, the German Aerospace Center and the Max Planck Society.