Unearthing Easter Island’s Moai

Two Moai are shown during excavations by Jo Anne Van Tilburg and her team at Rano Raraku quarry on Rapa Nui, better known as Easter Island. Photo credit: Easter Island Statue Project

Rapa Nui (or Easter Island, as it is commonly known) is home to the enigmatic Moai, stone monoliths that have stood watch over the island landscape for hundreds of years. Their existence is a marvel of human ingenuity — and their meaning a source of some mystery.

Ancient Rapanui carvers worked at the behest of the elite ruling class to carve nearly 1,000 Moai because they, and the community at large, believed the statues capable of producing agricultural fertility and thereby critical food supplies, according to a new study from Jo Anne Van Tilburg, director of the Easter Island Statue Project, recently published in Journal of Archaeological Science.

Van Tilburg and her team, working with geoarchaeologist and soils specialist Sarah Sherwood, believe they have found scientific evidence of that long-hypothesized meaning thanks to careful study of two particular Moai excavated over five years in the Rano Raraku quarry on the eastern side of the Polynesian island.

Van Tilburg’s most recent analysis focused on two of the monoliths that stand within the inner region of the Rano Raraku quarry, which is the origin of 95 percent of the island’s more than 1,000 Moai. Extensive laboratory testing of soil samples from the same area shows evidence of foods such as banana, taro and sweet potato.

Van Tilburg said the analysis showed that in addition to serving as a quarry and a place for carving statues, Rano Raraku also was the site of a productive agricultural area.

“Our excavation broadens our perspective of the Moai and encourages us to realize that nothing, no matter how obvious, is ever exactly as it seems. I think our new analysis humanizes the production process of the Moai,” Van Tilburg said.

Van Tilburg has been working on Rapa Nui for more than three decades. Her Easter Island Statue Project is supported in part by UCLA’s Cotsen Institute of Archaeology. Tom Wake, a Cotsen Institute colleague, analyzes small-animal remains from the excavation site. Van Tilburg also serves as director of UCLA’s Rock Art Archive.

Van Tilburg, in partnership with members of the local community, heads the first legally permitted excavations of Moai in Rano Raraku since 1955. Cristián Arévalo Pakarati, a noted Rapanui artist, is project co-director.

The soils in Rano Raraku are probably the richest on the island, certainly over the long term, Sherwood said. Coupled with a fresh-water source in the quarry, it appears the practice of quarrying itself helped boost soil fertility and food production in the immediate surroundings, she said. The soils in the quarry are rich in clay created by the weathering of lapilli tuff (the local bedrock) as the workers quarried into deeper rock and sculpted the Moai.

A professor of earth and environmental systems at the University of the South in Sewanee, Tenn., Sherwood joined the Easter Island Project after meeting another member of Van Tilburg’s team at a geology conference.

She wasn’t originally looking for soil fertility, but out of curiosity and research habit, she did some fine-scale testing of samples brought back from the quarry.

“When we got the chemistry results back, I did a double take,” Sherwood said. “There were really high levels of things that I never would have thought would be there, such as calcium and phosphorous. The soil chemistry showed high levels of elements that are key to plant growth and essential for high yields. Everywhere else on the island the soil was being quickly worn out, eroding, being leeched of elements that feed plants, but in the quarry, with its constant new influx of small fragments of the bedrock generated by the quarrying process, there is a perfect feedback system of water, natural fertilizer and nutrients.”

She said it also looks like the ancient indigenous people of Rapanui were very intuitive about what to grow — planting multiple crops in the same area, which can help maintain soil fertility.

The Moai that Van Tilburg’s team excavated were discovered upright in place, one on a pedestal and the other in a deep hole, indicating they were meant to remain there.

“This study radically alters the idea that all standing statues in Rano Raraku were simply awaiting transport out of the quarry,” Van Tilburg said. “That is, these and probably other upright Moai in Rano Raraku were retained in place to ensure the sacred nature of the quarry itself. The Moai were central to the idea of fertility, and in Rapanui belief their presence here stimulated agricultural food production.”

Van Tilburg and her team estimate the statues from the inner quarry were raised by or before A.D. 1510 to A.D.1645. Activity in this part of the quarry most likely began in A.D.1455. Most production of Moai had ceased in the early 1700s due to western contact.

The two statues Van Tilburg’s team excavated had been almost completely buried by soils and rubble.

“We chose the statues for excavation based on careful scrutiny of historical photographs and mapped the entire Rano Raraku inner region before initiating excavations,” she said.

Van Tilburg has worked hard to establish connections with the local community on Rapa Nui. The project’s field and lab teams are made up of local workers, mentored by professional archeologists and geologists.

The result of their collective efforts is a massive detailed archive and comparative database that documents more than 1,000 sculptural objects on Rapa Nui, including the Moai, as well as similar records on more than 200 objects scattered in museums throughout the world. In 1995, UNESCO named Easter Island a World Heritage Site, with most of the island’s sacred sites protected within Rapa Nui National Park.

This is the first definitive study to reveal the quarry as a complex landscape and to make a definitive statement that links soil fertility, agriculture, quarrying and the sacred nature of the Moai.

Van Tilburg and her team are working on another study that analyzes the rock art carvings that exist on only three of the Moai.

This article originally appeared in the UCLA Newsroom.

That Supermassive Black Hole in our Galaxy? It has a Friend.

Two black holes are entwined in a gravitational tango in this artist’s conception. Photo Credit: NASA/JPL-Caltech/SwRI/MSSS/Christopher Go

Smadar Naoz is an associate professor of physics and astronomy in the UCLA College. She wrote this article for The Conversation.

Do supermassive black holes have friends? The nature of galaxy formation suggests that the answer is yes, and in fact, pairs of supermassive black holes should be common in the universe.

I am an astrophysicist and am interested in a wide range of theoretical problems in astrophysics, from the formation of the very first galaxies to the gravitational interactions of black holes, stars and even planets. Black holes are intriguing systems, and supermassive black holes and the dense stellar environments that surround them represent one of the most extreme places in our universe.

The supermassive black hole that lurks at the center of our galaxy, called Sgr A*, has a mass of about 4 million times that of our sun. A black hole is a place in space where gravity is so strong that neither particles or light can escape from it. Surrounding Sgr A* is a dense cluster of stars. Precise measurements of the orbits of these stars allowed astronomers to confirm the existence of this supermassive black hole and to measure its mass. For more than 20 years, scientists have been monitoring the orbits of these stars around the supermassive black hole. Based on what we’ve seen, my colleagues and I show that if there is a friend there, it might be a second black hole nearby that is at least 100,000 times the mass of the sun.

Supermassive black holes and their friends

Almost every galaxy, including our Milky Way, has a supermassive black hole at its heart, with masses of millions to billions of times the mass of the sun. Astronomers are still studying why the heart of galaxies often hosts a supermassive black hole. One popular idea connects to the possibility that supermassive holes have friends.

To understand this idea, we need to go back to when the universe was about 100 million years old, to the era of the very first galaxies. They were much smaller than today’s galaxies, about 10,000 or more times less massive than the Milky Way. Within these early galaxies the very first stars that died created black holes, of about tens to thousand the mass of the sun. These black holes sank to the center of gravity, the heart of their host galaxy. Since galaxies evolve by merging and colliding with one another, collisions between galaxies will result in supermassive black hole pairs – the key part of this story. The black holes then collide and grow in size as well. A black hole that is more than a million times the mass of our sun is considered supermassive.

If indeed the supermassive black hole has a friend revolving around it in close orbit, the center of the galaxy is locked in a complex dance. The partners’ gravitational tugs will also exert its own pull on the nearby stars disturbing their orbits. The two supermassive black holes are orbiting each other, and at the same time, each is exerting its own pull on the stars around it.

The gravitational forces from the black holes pull on these stars and make them change their orbit; in other words, after one revolution around the supermassive black hole pair, a star will not go exactly back to the point at which it began.

Using our understanding of the gravitational interaction between the possible supermassive black hole pair and the surrounding stars, astronomers can predict what will happen to stars. Astrophysicists like my colleagues and me can compare our predictions to observations, and then can determine the possible orbits of stars and figure out whether the supermassive black hole has a companion that is exerting gravitational influence.

Using a well-studied star, called S0-2, which orbits the supermassive black hole that lies at the center of the galaxy every 16 years, we can already rule out the idea that there is a second supermassive black hole with mass above 100,000 times the mass of the sun and farther than about 200 times the distance between the sun and the Earth. If there was such a companion, then I and my colleagues would have detected its effects on the orbit of SO-2.

But that doesn’t mean that a smaller companion black hole cannot still hide there. Such an object may not alter the orbit of SO-2 in a way we can easily measure.

The physics of supermassive black holes

Supermassive black holes have gotten a lot of attention lately. In particular, the recent image of such a giant at the center of the galaxy M87 opened a new window to understanding the physics behind black holes.

The proximity of the Milky Way’s galactic center – a mere 24,000 light-years away – provides a unique laboratory for addressing issues in the fundamental physics of supermassive black holes. For example, astrophysicists like myself would like to understand their impact on the central regions of galaxies and their role in galaxy formation and evolution. The detection of a pair of supermassive black holes in the galactic center would indicate that the Milky Way merged with another, possibly small, galaxy at some time in the past.

That’s not all that monitoring the surrounding stars can tell us. Measurements of the star S0-2 allowed scientists to carry out a unique test of Einstein’s general theory of relativity. In May 2018, S0-2 zoomed past the supermassive black hole at a distance of only about 130 times the Earth’s distance from the sun. According to Einstein’s theory, the wavelength of light emitted by the star should stretch as it climbs from the deep gravitational well of the supermassive black hole.

The stretching wavelength that Einstein predicted – which makes the star appear redder – was detected and proves that the theory of general relativity accurately describes the physics in this extreme gravitational zone. I am eagerly awaiting the second closest approach of S0-2, which will occur in about 16 years, because astrophysicists like myself will be able to test more of Einstein’s predictions about general relativity, including the change of the orientation of the stars’ elongated orbit. But if the supermassive black hole has a partner, this could alter the expected result.

Finally, if there are two massive black holes orbiting each other at the galactic center, as my team suggests is possible, they will emit gravitational waves. Since 2015, the LIGO-Virgo observatories have been detecting gravitational wave radiation from merging stellar-mass black holes and neutron stars. These groundbreaking detections have opened a new way for scientists to sense the universe.

Any waves emitted by our hypothetical black hole pair will be at low frequencies, too low for the LIGO-Virgo detectors to sense. But a planned space-based detector known as LISA may be able to detect these waves which will help astrophysicists figure out whether our galactic center black hole is alone or has a partner.

This article originally appeared in the UCLA Newsroom.