Photo of student smiling.

Student Spotlight – Julia Nakamura

Photo of student smiling.

Fourth-year UCLA student researcher Julia Nakamura

Meet fourth-year UCLA student researcher Julia Nakamura!

Julia majors in Psychobiology with a minor in Gerontology and is in our Undergraduate Research Scholars Program. The title of her research project is “The Role of Social Support in the Association between Early Life Stress, Depression, and Inflammation in Older Adults.”

 

How did you first get interested in your research project?

UCLA’s Cluster course “Frontiers in Human Aging” initially sparked my interest in aging populations. Through a service learning project at ONEgeneration Adult Day Care Center, I directly witnessed the burden of chronic disease in later-life adults and realized the pressing need to understand the mechanisms underlying these adverse health outcomes. Through my coursework in psychology, I became interested in the psychological factors that influence biological mechanisms and have the potential to positively impact the trajectory of chronic disease outcomes.

I began research in psychology in Dr. Julienne Bower’s Mind-Body Lab under the direction of Dr. Kate Kuhlman. We study the effects of childhood adversity on biological and behavioral responses to psychological stress. My experiences in this lab led me to wonder what factors could mitigate adverse physical and mental health outcomes from stressful experiences, specifically in older adults. My honors research projects examines if social support moderates the relationship between early-life stress, depressive symptoms, and inflammation in older adults using data from the Health and Retirement Study.

What has been the most exciting aspect of your research so far?

Getting to test my own research questions has been the best part of this project. Specifically, it has been really exciting for me to run my own data analyses for the first time with Dr. Kuhlman’s guidance. Experiencing the “behind-the-scenes” of research and systematically moving through the steps of conducting an independent project has been really informative. This project has helped me to feel that I am truly developing the skill set of an independent researcher, which is very exciting!

What has surprised you about your research or the research process?

The immensely collaborative nature of research in academia was quite surprising to me when I first started on this project. Through my research, I’ve had the privilege of working with several scientists and professors who are experts in their respective areas of study. They have all welcomed me and helped to make my project as scientifically sound and comprehensive as possible. Research really builds on itself. Learning from other people’s projects and ideas, even if they are outside of your immediate area of study, can result in high levels of collaboration and really interesting research!

What is one piece of advice you have for other UCLA students thinking about doing research?

I would advise students interested in research to actively pursue research opportunities. There are plenty of amazing opportunities to be involved in research at UCLA, but you have to seek them out. It can be intimidating to take the initial steps to reach out to professors and discuss their research interests, but it is so worthwhile to find a lab and professor that are a good fit! I would recommend that students find an area of study that they are really passionate about. I think that your passion for your area of study and your continued curiosity will drive your research questions and help you get the most out of each research experience.

What effect do you hope your research has in your field, at UCLA, in your community, or in the world?

I hope to spend my life contributing to our understanding of the biobehavioral processes that promote mental and physical health across the lifespan. As the number of older adults (a majority of whom have at least one chronic disease) increase in our society, it is now more important than ever to identify potential intervention targets that can improve the trajectory of chronic disease outcomes.

This article originally appeared on the Undergraduate Research Center website.

Picture of a valley oak tree.

One of California’s iconic tree species offers lessons for conservation

Picture of a valley oak tree.

The valley oak, the largest oak in California, grows to over 100 feet tall and provides habitat and food for a variety of animals. Photo credit: Victoria Sork/UCLA

 

With increasing regularity, Californians are witnessing firsthand the destructive power of wildfires. But not everyone sees what happens after the flames die down, when debris is cleared, homes and lives rebuilt — and trees replanted to help nature recover.

New research led by UCLA evolutionary biologist Victoria Sork examines whether the trees being replanted in the wake of California’s fires will be able to survive a climate that is continuing to warm.

The study, which is published in the Proceedings of the Natural Academy of Sciences, focuses on California’s iconic valley oak. The research is among the first to demonstrate the potential of using genomics to inform conservation strategies — essentially giving species an evolutionary boost. The study showed that planting trees that are genetically better suited to higher temperatures makes them more likely to survive and grow to maturity.

“When we think about managing ecosystems under rapidly changing climates, we have to realize trees need to be able to survive past 50 years,” Sork said.

The paper also discovered something surprising: The valley oak, an essential component of many ecosystems in California, is already poorly adapted to its environment — even considering climate conditions in 2019.

“They actually seem to grow better in cooler climates than they’re in right now,” said Luke Browne, a postdoctoral scholar at the UCLA La Kretz Center for California Conservation Science and the study’s lead author. “They might grow better if climates were more like they were 21,000 years ago, during the last ice age.”

During the peak of the last ice age, summer temperatures were about 4 to 5 degrees Celsius colder, and ice covered most of Canada and mountainous areas of the U.S.

In the fields of conservation and land management, it is a common assumption that plants and animals are adapted to their environments — that’s how evolution and natural selection are supposed to work. The new research casts doubt on that assumption.

The study is part of an ongoing project initiated by Sork and Jessica Wright, an expert in conservation genetics at the USDA Forest Service, more than 10 years ago.

Researchers gathered 11,000 seeds from 94 locations throughout the trees’ range, which stretches from the Santa Monica Mountains to the Cascade foothills in the northern part of the state. They grew them to saplings in a greenhouse and planted them in two large experimental gardens, in Chico and Placerville, California. They tracked how well trees from different locations grew, and sequenced the genomes of their mother trees to link genetic information and growth rates.

The researchers then identified which genetic variants would be more likely to thrive as climate change continues to warm California. They predicted that, under predicted future warmer temperatures, trees containing beneficial genetic variations would have 11% higher growth rates than the average for all of the trees in the experiment, and 25% higher growth rates than the trees without the beneficial variations.

Information like that could help the U.S. Forest Service, for example, in its efforts to restore forests with species that have the best chance for long-term survival.

“Studies like this one provide valuable insights that help land managers make informed decisions on reforestation projects,” Wright said. “When planting trees in a particular location, managers have to decide where to collect the acorns.”

By 2070, average temperatures in the state are projected to be up to 4.8 degrees warmer than they were during the mid- to late 20th century.

“That’s going to have consequences for how fast these trees grow,” Browne said. “We’re at a challenging time to figure out the best way to do conservation science. This paper shows one approach we could use that takes advantage of modern genomics.”

The study did not determine why valley oaks are not well adapted to their environment. It might be because the climate has already warmed up so much, the trees’ long lifespans — up to 500 years — or some other, unknown factor.

The valley oak is the largest oak in California; it grows to over 100 feet tall, and has dark green leaves and a deeply grooved trunk. It is considered a foundational species because it provides habitat and food for a variety of animals, including squirrels, birds, deer and insects. In parts of the state, it is one of the only species of tree that exists. Valley oaks provide benefits to humans, too: filtering water and providing shady places to escape the heat.

Although it focuses on the oak, the paper has broader implications for conservation science in a changing climate — especially for species that evolve and adapt slowly. That’s what Sork and Wright were thinking when they initiated the project.

At the time, they hoped to find conservation strategies that could eventually be implemented using genetic information alone — without extensive field experiments.

“Not everyone in the world is going to be able to collect 11,000 seeds and plant them in a common garden,” Sork said.

This article originally appeared in the UCLA Newsroom.

UCLA Opens World’s 1st Institute To Study Kindness

Picture of melting ice in body of water.

Arctic Ocean could be ice-free for part of the year as soon as 2044

Picture of melting ice in body of water.

The fate of Arctic sea ice is a key topic for climate scientists because of its role in temperatures around the rest of the world. Photo: NASA

It’s hard to imagine the Arctic without sea ice.

But according to a new study by UCLA climate scientistshuman-caused climate change is on track to make the Arctic Ocean functionally ice-free for part of each year starting sometime between 2044 and 2067.

As long as humans have been on Earth, the planet has had a large cap of sea ice at the Arctic Circle that expands each winter and contracts each summer. The knowledge that sea ice is on the decline is not new: Satellite observations show that since 1979, the amount of sea ice in the Arctic in September — the month when there is the least sea ice, before water starts freezing again — has declined by 13 percent per decade.

Scientists have been attempting to predict the future of Arctic sea ice for several decades, relying on an array of global climate models that simulate how the climate system will react to all of the carbon dioxide entering the atmosphere. But the models’ predictions have disagreed widely. Among the current generation of models, some show ice-free Septembers as early as 2026; others suggest the phenomenon will begin as late as 2132.

The UCLA study, which was published in Nature Climate Change, focuses the predictions to a 25-year period.

The study’s lead author is Chad Thackeray, an assistant researcher at the UCLA Institute of the Environment and Sustainability’s Center for Climate Science. He said one reason predictions about sea ice loss diverge so much is that they differ in how they consider a process called sea ice albedo feedback, which occurs when a patch of sea ice completely melts, uncovering a seawater surface that’s darker and absorbs more sunlight than ice would have. That change in the surface’s reflectivity of sunlight, or albedo, causes greater local warming, which in turn leads to further ice melt.

The cycle exacerbates warming — one reason the Arctic is heating up twice as fast as the rest of the globe.

For their study, Thackeray and co-author Alex Hall, a UCLA professor of atmospheric and oceanic sciences, set out to determine which models are most realistic in how they weigh the effects of sea ice albedo feedback, which they figured would lead them to the most realistic projections for sea ice loss.

Luckily — for research purposes, at least — sea ice albedo feedback not only happens over long periods of time due to climate change; it also happens every summer when sea ice melts for the season. And satellite observations over the past few decades have tracked that seasonal melt and resulting albedo feedback.

Thackeray and Hall assessed 23 models’ depiction of seasonal ice melt between 1980 and 2015 and compared them with the satellite observations. They retained the six models that best captured the actual historical results and discarded the ones that had proven to be off base, enabling them to narrow the range of predictions for ice-free Septembers in the Arctic.

The approach of using an observable process in the current climate to evaluate global climate model projections of future climate was pioneered by Hall and his group in 2006, in a study focused on snow albedo feedback. (As the name implies, snow albedo feedback is similar to sea ice albedo feedback but involves snow loss uncovering a darker land surface.) It has since become widely used in climate science as researchers try to improve the precision of their projections.

The fate of Arctic sea ice is a key topic for climate scientists because of its role in temperatures around the rest of the world.

“Arctic sea ice is a key component of the earth system because of its highly reflective nature, which keeps the global climate relatively cool,” Thackeray said.

There are other environmental and economic implications to ice loss as well. Sea ice is critical to the Arctic ecosystem, and to the fishing industry and indigenous peoples who depend on that ecosystem. And as Arctic ice is lost, more waters are used for commercial shipping and oil and gas exploration, which presents economic opportunity for some nations, but which also contributes to further greenhouse gas emissions and climate change.

“The changes to come will have broad environmental, ecological and economic implications,” Thackeray said. “By reducing the uncertainty in when we’ll see those changes, we can be better prepared.”

The research is line with the goals of UCLA’s Sustainable LA Grand Challenge, an initiative that aims to transition Los Angeles County to 100 percent renewable energy, 100 percent locally sourced water and enhanced ecosystem health by 2050.

This article originally appeared in the UCLA Newsroom.

Picture of Hindou Oumarou Ibrahim.

Activist Hindou Oumarou Ibrahim wins Pritzker Award for young environmental innovators

Picture of Hindou Oumarou Ibrahim.

Hindou Oumarou Ibrahim reacts to the award announcement as UCLA professor Magali Delmas (left) looks on. Photo: Jonathan Young/UCLA

The UCLA Institute of the Environment and Sustainability presented the 2019 Pritzker Emerging Environmental Genius Award to Hindou Oumarou Ibrahim, a member of Chad’s Mbororo indigenous semi-nomadic community.

Ibrahim promotes environmental protections for indigenous groups through work with international organizations, including as a member of the United Nations Indigenous Peoples Partnership’s policy board. She also leads a community-based environmental coalition in the region surrounding Lake Chad, a critical water source that has shrunk 90% since 1980 — in part because temperatures in the area rose 1.5 degrees Celsius over the past century. Violent conflict has occasionally broken out among groups competing for the vital resource.

The annual award carries a prize of $100,000, which is funded through a portion of a $20 million gift to UCLA from the Anthony and Jeanne Pritzker Family Foundation. It is the field’s first major honor specifically for innovators under the age of 40 — those whose work stands to benefit most from the prize money and the prestige it conveys.

Ibrahim said the award, which was presented Nov. 7 at UCLA’s Hershey Hall, will help amplify the voices of 370 million indigenous people around the world.

“The voices of indigenous people are being heard here — through me, through all of you and through this prize,” Ibrahim said. “We are all together. We will win this battle, I am so confident.”

University researchers, Pentagon experts and others have found that rapid climate change — driven largely by human-caused carbon emissions — have contributed to a growing number of armed conflicts. The phenomenon is expected to particularly affect regions that are already unstable.

To prevent and reduce conflict in the Lake Chad basin, Ibrahim developed a program that gathers information on natural resources from farmers, fisherman and herders in more than a dozen African ethnic groups, and then produces 3D maps of those natural resources that their communities can share. The effort is intended to reduce the chance for conflict among the groups.

“It’s amazing to see women and men who have never been to school working jointly to build 3D maps that share critical knowledge, like where fresh water can be found even in the worst days of a drought,” Ibrahim wrote in her award application. “But the most interesting aspect of this project is that it helps to reduce conflict and tension between communities.”

Hindou is an official adviser to the UN Secretary General in advance of a major climate summit taking place in Glasgow in September 2020. She also advocates for indigenous peoples’ rights, women’s rights and environmental justice in high-profile global forums, including as a National Geographic Explorer and a senior indigenous fellow for Conservation International.

Picture of a group taking a selfie.

Shawn Escoffery, executive director of the Roy and Patricia Disney Foundation, with the 2019 Pritzker Award finalists, May Boeve, Hindou Oumarou Ibrahim and Varshini Prakash. Photo: Jonathan Young/UCLA

The Pritzker Award is open to anyone working to solve environmental challenges through any lens — from science to advocacy and entrepreneurism. But all three finalists for this year’s award were activists, which may reflect the global trend of young people taking a more vigorous role in fighting against climate change. In addition to Ibrahim, the finalists were May Boeve, executive director of 350.org, and Varshini Prakash, founder of the Sunrise Movement. Finalists were selected by a panel of UCLA faculty from 20 candidates who were nominated by an international group of environmental leaders.

Ibrahim was chosen as winner by five distinguished judges: Shawn Escoffery, executive director of the Roy and Patricia Disney Foundation; sustainability and marketing expert Geof Rochester; philanthropists Wendy Schmidt and Nicolas Berggruen; and Kathryn Sullivan, former head of the National Oceanic and Atmospheric Administration and the first American woman to walk in space.

Peter Kareiva, director of UCLA Institute of the Environment and Sustainability, said the Pritzker Award’s biggest value is that it brings together a community of candidates, past winners, UCLA faculty and the environmental leaders who serve as judges and nominators.

“We’re way beyond the time where a single innovation is going to do it, a single policy is going to do it. We’re way beyond that,” Kareiva said.

After receiving the award from Tony Pritzker, Ibrahim echoed that sentiment and called the other finalists up to the podium.

“We need action, and this action can only happen if we all join hands,” Ibrahim said. “We will make it all together.”

This article originally appeared in the UCLA Newsroom.