General Education Course Information Sheet *Please submit this sheet for each proposed course*

Course Title		Physics of renewable	e energy		
licate if Seminar and	Vor Writing II course				
Check the recomm	nended GE foundati	ion area(s) and subgrou	ps(s) for this c	course	
Foundatio	ons of the Arts and	Humanities			
• Literary	and Cultural Anal	ysis			
• Philoso	phic and Linguistic	Analysis			
• Visual	and Performance A	rts Analysis and Practic	e	—	
Foundatio	ons of Society and	Culture			
• Historic	cal Analysis				
• Social A	Analysis			—	
Foundatio	ons of Scientific Ind	quiry			
Physica	al Science				4 units
With	Laboratory or Demor	nstration Component must	t be 5 units (or a	more)	
• Life Sc	eience			_	
With	Laboratory or Demor	istration Component musi	t be 5 units (or i	more)	
Briefly describe th	ne rationale for assig	gnment to foundation a	rea(s) and sub	group(s) chose	en.
The course is a s	urvey of the physics	s at the foundation of er	nergy producti	ion and use. It	will includ
a summary of cla	assical mechanics ar	nd fluid-dynamics, ther	modynamics,	electromagnet	ism, and
nuclear processe	s Emphasis will be	put on quantitative thin	lkino		
F	F	F T			
"List faculty mem Professor Tomm	ber(s) who will serv aso Treu	ve as instructor (give ac	ademic rank):	:	
Do you intend to	use graduate stude	nt instructors (TAs) in t	his course?	Yes x	No
-	LI V	es, please indicate the r	number of TA	s 1/2	
		, <u>,</u>			
Indicate when do	you anticipate teach	ing this course over the	e next three ye	ears:	
2016-2017	Fall	Winter	2017	_ Spring	
	Enrollment	Enrollment	60	_ Enrollment	
2014-2015	Fall	Winter	2018	Spring	
	Enrollment	Enrollment	90	Enrollment	
2015-2016	Fall	Winter	2019	Spring	
	Enrollment	Enrollment	120	Enrollment	
GE Course Units					
ls this an <u>existing</u> of	course that has been	modified for inclusion	in the new G	E? Yes	No
ii ves, provide a br	iei explanation of w	vnat nas changed.			
, ,					

6. Please present concise arguments for the GE principles applicable to this course.

General Knowledge	Physics N is designed for non-majors and provides a broad overview of the physics principle behind energy production and use. Students will gain insight into the scientific method and quantitative thinking.
Integrative Learning	
Ethical Implications	Energy policy and sustainability are some of the fundamental societal issues of our time. This course provides much needed tools that our students can use to inform their thinking and reach a better understanding of the options available and the choices they need to make.
Cultural Diversity	Energy production and use is truly a global problem that affects the entire planet and society. We will explore how different cultures address the issue of energy production and consumption
Critical Thinking	Learning about the physics behind energy production and consumption is an essential piece of developing critical thinking about this all important problem.
Rhetorical Effectiveness	In the discussion sections students will be expected to debate and discuss the often conflicting ideas about energy production and consumption. Often issues surrounding energy production, sustainability and nuclear power trigger strong debates.
Problem-solving	The exams and Essay will require the students to apply their newly acquired knowledge to their own life and integrate several ideas from the course.
Library & Information Literacy	Along with the primary textbook, the course will help students better understand how to use online resources to develop a quantitative approach to problems.
(A) STUDENT CONTA	ACT PER WEEK (if not applicable write N/A)

1.	Lecture:	3	(hours)
2.	Discussion Section:	1	(hours)
3.	Labs:		(hours)
4.	Experiential (service learning, internships, other):		(hours)
5.	Field Trips:		(hours)
(A) TOTAL Student Contact Per Week		4	(HOURS)

(B) OUT-OF-CLASS HOURS PER WEEK (if not applicable write N/A)				
1.	General Review & Preparation:	2	(hours)	
2.	Reading	5	(hours)	
3.	Group Projects:	0	(hours)	
4.	Preparation for Quizzes & Exams:	2	(hours)	
5.	Information Literacy Exercises:	2	(hours)	
6.	Written Assignments:	0	(hours)	
7.	Research Activity:	0	(hours)	
(B) TOTAL Out-of-class time per week		11	(HOURS)	

GRAND TOTAL (A) + (B) must equal at least 15 hours/week	15.0	(HOURS)
---	------	---------

Physics N – Physics of Renewable Energy

N. Physics of Renewable Energy (4) This course is composed of weekly lectures (3) hours) and discussion sessions (1 hour), and is devoted to discussing the Physics underpinnings of energy sources and consumption, with an emphasis on renewables. This course is intended for general UCLA students and no special mathematical preparation is required beyond that necessary for admission to UCLA in freshman standing. The course takes a global view of the energy balance in our lives, from the point of view of the physical processes. Students will reach a deeper understanding of the ways in which energy is used in every day life (transportation, heating, cooling), and the ways in which it is produced, covering all the common and speculative sources of energy (from fossil fuels, to solar, wind, nuclear, and fusion). Students will learn the fundamental physical limitations of each technology and will master concepts such as the efficiency of thermodynamic cycles and of chemical and nuclear reactions. Students will learn to quantitatively estimate the amount of energy they use in their daily lives and what physical processes could produce it. For their final assignment, students will be asked to propose a quantitative sustainable energy plan for their household, California, or the Earth, respecting the laws of physics. P/NP or letter grade.

Course Justification

Renewable Energy is a major concern in our every day life, deeply felt by many of our UCLA students, who regularly read about, discuss, and vote on issues related to energy and sustainability. In fact, UC is currently engaged in a campaign to become the first carbon-neutral major university (http://www.ucop.edu/initiatives/carbon-neutralityinitiative.html). Unfortunately, students (as well as most of the general public) are not always informed about the physical processes that provide the foundations for all these arguments, debates, and choices. In order to appreciate the feasibility of the new technologies, it is important to understand the scientific foundations of renewable energy and the difference between technological and physical limitations. This course will explore different sources of energy by covering topics in classical mechanics and fluid dynamics, thermodynamics, the structure of the atom, fission, and fusion. A solid basic understanding of these processes is key to navigate our increasingly complex energy choices. Emphasis will be placed on quantitative estimates of physical phenomena as constraints and input to important social decisions. There are two courses on similar subjects at the upper division level at UCLA (PHYS-188A: "Physics of Energy"; and EPSS-101 "Earth's Energy: Diminishing Fossil Resources and Prospects for Sustainable Future"), but nothing at the lower division general education level. The proposed course complements well the existing ones, by providing an introduction to the topic to the broadest possible audience. Interested students will acquire through this course the necessary knowledge they need to pursue the subject in more detail at the upper division level, if they wish.

<u>Textbook: Sustainable Energy – without the hot air</u>

Book Description

Author: David J MacKay, FRS; Publication Date: **December 2, 2008** (February 20 2009, US) | ISBN-13: **9780954452933** | Edition: **1**

Key Benefits: Written for the non-science major<u>s</u>, this book describes systematically the way energy is used and produced from the point of view of a physicist. It provides <u>a</u> <u>relatively simple</u> understanding of the basic physical phenomena and <u>the</u> tools to approach the subject in a quantitative manner. The textbook can be bought on Amazon but it is also made freely available by the author for personal use.

Key Topics: the physics behind means of transportation: Newton's mechanics and fluid dynamics. Wind power and fluid dynamics. Tide and waves. Solar power, and nuclear fusion. Heating and Cooling and thermodynamics. The nature of light and light production and use. The energy balance of food production. Geothermal energy. The basics of nuclear fission and fusion.

Physics N – Physics of Renewable Energy

Instructer:	Dr. Tommaso Treu
Email:	tt@astro.ucla.edu
Web:	http://www.astro.ucla.edu/~tt/Welcome.html
Schedule:	TR 75 minute lectures + TA sessions
Office Hours:	TBD; or by appointment
Office:	3-718 Physics and Astronomy Building (PAB)
Textbook:	<i>"Sustainable Energy – without the hot air"</i> , 1 st ed., UIT Cambridge.

Course Description: The course is devoted to discussing the Physics underpinnings of energy sources and consumption, with an emphasis on renewables. This course is intended for general UCLA students and no special mathematical preparation is required beyond that necessary for admission to UCLA in freshman standing. The course takes a global view of the energy balance in our lives, from the point of view of the physical processes. Students will reach a deeper understanding of the ways in which energy is used in every day life (transportation, heating, cooling), and the ways in which it is produced, covering all the common and speculative sources of energy (from fossil fuels, to solar, wind, nuclear, and fusion). Students will learn the fundamental physical limitations of each technology and will master concepts such as the efficiency of thermodynamic cycles and of chemical and nuclear reactions. Students will learn to quantitatively estimate the amount of energy they use in their daily lives and what physical processes could produce it. For their final assignment, students will be asked to propose a quantitative sustainable energy plan for their household, California, or the Earth, respecting the laws of physics.

Grading: Grades will be based on one midterm, section participation, a final multiplechoice exam and a written essay. The final will be comprehensive over the entire course.

Midterm:	Week 6		30%
Essay: du	e before end of class		20%
Section Pa	articipation		10%
Final:	Cumulative		40%
		Total:	100%

General Rules:

- Sections: You must attend your assigned section for participation. You are allowed to miss up to two sections without penalty.
- No makeup midterms: In extreme situations such as a written medical excuse, the average of the other exams will be used for the missing midterm grade.

The final exam MUST be taken for a passing grade.

All forms of cheating and academic dishonesty will be reported to the Dean of Students. As part of this, midterms, quizzes and the final exam must be completed by the enrolled student without outside assistance and in a manner consistent with standard testing procedures and regulations. I suggest that all students visit the Dean of Students' website, which includes a guide to academic integrity: http://www.studentgroups.ucla.edu/dos/assets/documents/StudentGuide.pdf

Approximate Class Schedule

Week 1

- Introduction to the energy problem: units and quantitative thinking
- Energy, Work, and Power

Week 2

• Means of transportations: cars, planes, trains and Newton's laws

Week 3

• <u>Winds, Waves, and Solar Energy: fluid dynamics and electromagnetism</u> Week 4

• Heating, cooling and thermodynamics

Week 5

• <u>Gravity, hydro-electric and tide power</u>

Week 6 Midterm

• <u>Geothermal power</u>

Week 7

• Fission and Fusion

Fossil fuels

Week 8

• Foodstuff

• Manufacturing

Week <u>9</u>

• Balancing the energy budget: putting it all together.

• How much can we improve things? Physical limits and technological limits Week <u>10 Essay due</u>

• <u>Cases studies: examples of sustainable energy plans</u>

Final Exam (Comprehensive) - TBD

UCLA Course Inventory Management System Main Menu Inventory Help Reports Exit

Course Revision Proposal

Physics 12 **Physics of Sustainable Energy**

Requested revisions that apply:

Renumbering Title Format Requisites Units Grading Description Multiple Listing: Add New Change Number Delete Concurrent Listing: Add New Change Number Delete PROPOSED

Physics 12

CURRENT

Course Number Physics 12

<u>Title</u> Physics of Renewable Energy Short Title RENEWABLE ENERGY

Units Fixed: 4

Grading Letter grade or Passed/Not Basis Passed

Instructional Primary Format Format Lecture

> Secondary Format Discussion

TIE Code LECS - Lecture (Plus Supplementary Activity) [T] **GE** No

Requisites None

Description Lecture, three hours; discussion, one hour. Special mathematical preparation beyond that necessary for admission to UCLA in freshman standing not required. Discussion of physics underpinnings of energy sources and consumption, with emphasis on renewables. Global view of energy balance in our lives from point of view of physical processes. Ways in which energy is used in everyday life (transportation, heating, cooling), and ways in which it is produced, covering all common and speculative sources of energy from fossil fuels to solar, wind, nuclear, and fusion. Fundamental physical limitations of each technology to master concepts such as efficiency of thermodynamic cycles and of chemical and nuclear reactions. Quantitative estimation of amount of energy students use in their daily lives and what physical processes could produce it. P/NP or letter grading.

Physics of Sustainable Energy SUSTAINABLE ENERGY Fixed: 4 Letter grade or Passed/Not Passed **Primary Format** Lecture - 3 hours per week Secondary Format **Discussion - 1 hours per week** LECS - Lecture (Plus Supplementary Activity) [T]

No

None

Lecture, three hours; discussion, one hour. Special mathematical preparation beyond that necessary for admission to UCLA in freshman standing not required. Discussion of physics underpinnings of energy sources and consumption, with emphasis on renewables. Global view of energy balance in our lives from point of view of physical processes. Ways in which energy is used in everyday life (transportation, heating, cooling), and ways in which it is produced, covering all common and speculative sources of energy from fossil fuels to solar, wind, nuclear, and fusion. Fundamental physical limitations of each technology to master concepts such as efficiency of thermodynamic cycles and of chemical and nuclear reactions. Quantitative estimation of amount of energy students use in their daily lives and what physical processes could produce it. P/NP or letter grading.

Sustainable is a broader term than renewable (there are some sources of PAGE 8 of 10

energy that are sustainable without in principle being renewable--even the sun, for example, will eventually run out of fuel so we don't renew this source of energy at a fundamental physics level, but it is sustainable because it would billions of years for solar power to run out. The material and content of the course is the same but "sustainable" is a more accurate description.

Syllabus Supplemental Information Effective Winter 2017 Date Department Physics & Astronomy Contact

Winter 2017

Physics & Astronomy Name FRANCOISE QUEVAL E-mail queval@physics.ucla.edu

Routing Help

ROUTING STATUS

Role: FEC School Coordinator - Castillo, Myrna Dee Figuracion (MKIKUCHI@COLLEGE.UCLA.EDU) - 45040 Status: Pending Action Role: FEC Chair or Designee - Bristow, Joseph E (JBRISTOW@HUMNET.UCLA.EDU) - 54173 Status: Approved on 9/19/2016 8:19:35 PM Changes: TIE Code Comments: Change from "renewable" to "sustainable" is approved Role: L&S FEC Coordinator - Kikuchi, Myrna Dee Castillo (MKIKUCHI@COLLEGE.UCLA.EDU) - 45040 Status: Returned for Additional Info on 8/31/2016 3:51:40 PM Changes: TIE Code Comments: Routing to Joe Bristow for FEC approval. Role: Department/School Coordinator - Queval, Francoise A (QUEVAL@PHYSICS.UCLA.EDU) - 52453 Status: Approved on 8/12/2016 1:42:49 PM Changes: TIE Code Comments: This revision is done on behalf of Professor Ian McLean, Academic Vice Chair who has approved this change. Role: L&S FEC Coordinator - Kikuchi, Myrna Dee Castillo (MKIKUCHI@COLLEGE.UCLA.EDU) - 45040 Status: Returned for Additional Info on 8/12/2016 12:21:03 PM Changes: TIE Code **Comments:** Routing to Francoise for dept chair approval. Role: Initiator/Submitter - Queval, Francoise A (QUEVAL@PHYSICS.UCLA.EDU) - 52453 Status: Submitted on 8/12/2016 11:15:59 AM Comments: Initiated a Course Revision Proposal

Back to Course List

Comments or questions? Contact the Registrar's Office at <u>cims@registrar.ucla.edu</u> or (310) 206-7045