April 29, 2013
Scott Chandler, Chair
General Education Governance Committee
A265 Murphy Hall
157101

Attention: Myrna Dee F. Castillo, Program Representative

Dear Professor Chandler:

Please review the course *Understanding Ecology: Finding Interdisciplinary Solutions to Environmental Problems*, taught by Lecturer Alison Lipman, for two general education foundations: Foundations of Scientific Inquiry, and/or Foundations of Society and Culture. The course is currently in CIMS for offering in Fall 2013.

Sincerely,

G. Jennifer Wilson, Ph.D.
Assist. Vice Provost for Honors
UCLA
gjwilson@college.ucla.edu
(310) 825-1752
General Education Course Information Sheet
Please submit this sheet for each proposed course

Department & Course Number: HONORS COLLEGIUM 41
Course Title: Understanding Ecology: Finding Interdisciplinary Solutions to Environmental Problems
Indicate if Seminar and/or Writing II course: Seminar

1. Check the recommended GE foundation area(s) and subgroup(s) for this course:

 Foundations of the Arts and Humanities
 - Literary and Cultural Analysis
 - Philosophic and Linguistic Analysis
 - Visual and Performance Arts Analysis and Practice

 Foundations of Society and Culture
 - Historical Analysis
 - Social Analysis

 Foundations of Scientific Inquiry
 - Physical Science
 With Laboratory or Demonstration Component must be 5 units (or more)
 - Life Science
 With Laboratory or Demonstration Component must be 5 units (or more)

2. Briefly describe the rationale for assignment to foundation area(s) and subgroup(s) chosen.
 This is an interdisciplinary Honors seminar that examines the ecological basis of environmental issues (i.e. global climate change, biodiversity loss, pollution), how these issues affect society, and the possible collaborative solutions.

3. "List faculty member(s) who will serve as instructor (give academic rank):
 Alison Lipman, Lecturer

Do you intend to use graduate student instructors (TAs) in this course?
 Yes ____ No ____ X ____
 If yes, please indicate the number of TAs

4. Indicate when do you anticipate teaching this course over the next three years:

 | | 2013-2014 Fall | X | 2014-2015 Fall | X | 2015-2016 Fall | X |
 | | Enrollment | 20 | Enrollment | 20 | Enrollment | 20 |

 | | Winter | | Spring | | Spring | |
 | | Enrollment | | Enrollment | | Enrollment | |

5. GE Course Units
 Is this an existing course that has been modified for inclusion in the new GE? Yes ____ No ____ X ____
 If yes, provide a brief explanation of what has changed.

 Present Number of Units: 5 Proposed Number of Units: 5
6. Please present concise arguments for the GE principles applicable to this course.

<table>
<thead>
<tr>
<th>X General Knowledge</th>
<th>This is a course that includes a discursive look at society and culture in a way that enhances general knowledge of causes and solutions to environmental problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Integrative Learning</td>
<td>The course is interdisciplinary including ecology, life sciences, political science, journalism, economics, and sociology.</td>
</tr>
<tr>
<td>X Ethical Implications</td>
<td>Some parts of the course examine ways people, as individuals and as a society, politics, and ecology have affected each other through environmental issues.</td>
</tr>
<tr>
<td>X Cultural Diversity</td>
<td>Many cultural viewpoints addressing global environmental present and future issues are addressed (i.e. international documentaries, popular science articles).</td>
</tr>
<tr>
<td>X Critical Thinking</td>
<td>Students required to think critically about complex concepts of culture, society, and the vast effects of environmental issues throughout a culture.</td>
</tr>
<tr>
<td>X Rhetorical Effectiveness</td>
<td>Writing required and assessed</td>
</tr>
<tr>
<td>X Problem-solving</td>
<td>Course raises issues of “how?” (i.e. How many people know about these environmental issues, and how do we more effectively reach and educate a larger population?) and exhorts students to seek answers.</td>
</tr>
<tr>
<td>X Library & Information Literacy</td>
<td>Course requires library/web research</td>
</tr>
</tbody>
</table>

(A) STUDENT CONTACT PER WEEK (if not applicable write N/A)

1. Lecture:	4 (hours)
2. Discussion Section:	
3. Labs:	
4. Experiential (service learning, internships, other):	
5. Field Trips:	

(A) TOTAL Student Contact Per Week: 4 (HOURS)

(B) OUT-OF-CLASS HOURS PER WEEK (if not applicable write N/A)

1. General Review & Preparation:	1 (hours)
2. Reading	2 (hours)
3. Group Projects:	1 (hours)
4. Preparation for Quizzes & Exams: (Amortized)	1 (hours)
5. Information Literacy Exercises:	1 (hours)
6. Written Assignments: (Amortized)	3 (hours)
7. Research Activity: (Amortized)	2 (hours)

(B) TOTAL Out-of-class time per week: 11 (HOURS)

GRAND TOTAL (A) + (B) must equal at least 15 hours/week: 15 (HOURS)
COURSE PROPOSAL FOR THE HONORS COLLEGIUM

Instructor: Alison Lipman, Ph.D.
Field of Study: Ecology / Life Sciences
Seminar, four hours per week

a. Course title
Understanding ecology: finding interdisciplinary solutions to environmental problems

b. Course description
The goal of this course is to teach students environmental literacy, through a diverse and integrative curriculum, in an intimate and participatory seminar environment. This class will allow students to explore the ecological basis of the planet’s most important environmental issues (e.g., global climate change, ocean acidification, biodiversity loss, deforestation, pollution, declining freshwater resources, declining fisheries), which threaten the very resource base we depend upon for survival. Students from all majors will gain an understanding of the scientific method, as we delve into the most current scientific evidence behind these issues. Most importantly, through class discussions and assignments, students will be pushed to critically evaluate and determine what these issues mean for us as individuals, and a society, and how we can find collaborative solutions to humankind’s most pressing problems.

This course is based on the knowledge that the causes, and thus solutions, to environmental problems are (will be) interdisciplinary in nature. While an understanding of the science is essential to comprehending the causes and extent of environmental problems, the solutions to these problems will require collaboration by people from all fields (e.g., scientists, politicians, economists, educators, local citizens, writers, journalists, entrepreneurs, engineers, farmers, artists, advertisers). Because this class will include students from a variety of disciplines, we will have the opportunity to explore how interdisciplinary solutions can be forged.

To effectively teach the interdisciplinary nature of course themes, curriculum will be taught through diverse materials that link the social, economic, and political aspects of environmental issues to their scientific and ecological bases. Because people learn in different ways and through different senses, materials will include a variety of science-based media that include a textbook, scientific publications, documentary films, video clips, books, and governmental reports. The material will cover the most serious environmental issues, as well as the key concepts that underlie all course themes: 1) that environmental issues stem from and will eventually affect most aspects of our society, 2) environmental issues are interrelated and synergistic in their effects, and 3) environmental issues affect all of us. In order to be relevant to students from all majors, class curriculum is intended to broadly cover course concepts, while allowing for more detailed discussion of the topics that specifically interest the student group.

In addition to multi-media learning and discussions, students will engage in class teaching, as well as class projects in which they will “learn through doing.” Working in interdisciplinary groups, on “real world” research projects, students will identify and research real environmental problems and then forge and help implement science-based collaborative solutions to those problems. Through the discussion, analysis, and solving of real environmental problems with other people, students will gain the “real world” lessons of critical thinking and collaborative
solving problem. Students will have the unique opportunity to apply knowledge learned at the university to problem solving in the real world, while they are still in the academic setting.

A short explanation of what will be covered each week

<table>
<thead>
<tr>
<th>Week</th>
<th>Themes</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Class overview; what is environment?; ecological concepts (e.g., key terms, ecosystem services, ecological cycles)</td>
<td>Introduction of group project ideas; students meet individually with instructor to discuss group projects and independent themes.</td>
</tr>
<tr>
<td>2</td>
<td>What is science?; the scientific method; how to conduct research; the precautionary principle</td>
<td>Choose group projects and independent themes to present; groups meet separately with instructor to discuss projects; contact project collaborators to schedule meetings.</td>
</tr>
<tr>
<td>3</td>
<td>Human population; consumption and exploitation; urbanization</td>
<td>Student presentations; groups meet separately to discuss projects; groups meet with project collaborators.</td>
</tr>
<tr>
<td>4</td>
<td>Ecological economics; Tragedy of the Commons; politics</td>
<td>Midterm Exam; student presentations; groups meet separately with instructor to discuss projects.</td>
</tr>
<tr>
<td>5</td>
<td>Biodiversity loss; habitat loss (land, freshwater, marine)</td>
<td>Student presentations; groups meet separately to discuss projects</td>
</tr>
<tr>
<td>6</td>
<td>Freshwater resources</td>
<td>Student presentations; groups meet separately with instructor to discuss projects; if necessary, groups meet with project collaborators.</td>
</tr>
<tr>
<td>7</td>
<td>Agricultural issues</td>
<td>Student presentations; groups meet separately to discuss projects.</td>
</tr>
<tr>
<td>8</td>
<td>Marine resources; overfishing; aquaculture</td>
<td>Student presentations; groups meet separately with instructor to discuss projects.</td>
</tr>
<tr>
<td>9</td>
<td>Climate change; ocean acidification; energy resources; pollution (air, land, water)</td>
<td>Student presentations; groups meet separately to discuss projects; final group meetings with project collaborators.</td>
</tr>
<tr>
<td>10</td>
<td>Environmental ethics; course conclusions</td>
<td>Presentation of group projects to class and project collaborators.</td>
</tr>
</tbody>
</table>

Page 2 of 8
c. A list of proposed texts
Each week, in order to be prepared for the discussion themes, students will be required to read and/or view required media that will include a selection of books, scientific articles, popular science articles, full length documentary films, and shorter video clips.

Textbook (online free-source)
Only relevant sections will be assigned for reading.

Scientific Articles
This list will be updated before the course to include publications of the most current findings. Students will be required to read two to four articles per week. Examples of articles:

Books
Students will be required to read two of the following books:
- *The Population Explosion* - Paul and Anne Ehrlich
- *The Future of Life* - E. O. Wilson
- *Collapse: How Societies Choose to Fail or Succeed* - Jared Diamond
- *The World is Blue: How our fate and the ocean’s are one* - Sylvia Earle
- *Our Stolen Future* - Theo Colborn, Dianne Dumanoski, and John Peterson Myers

Films
- *The Story of Stuff* (short)
- TED Talks: Sylvia Earle, Captain Charles Moore, E.O. Wilson
- *Flow: For the Love of Water*
- *Food, Inc.*
- *The Future of Food*
- *End of the Line*
- *Homo Toxicus*
- *Frontline: Poisoned Waters*
- *A Crude Awakening*
- *Tapped*
- *Chasing Ice*
- *An Inconvenient Truth*
d. Specific explanations of how students will earn a grade (number of papers, exams, etc.); please indicate precisely the number, length, and kind of assignments, and the percentage weight given to each

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Research Project</td>
<td>25%</td>
</tr>
<tr>
<td>Independent Presentation</td>
<td>15%</td>
</tr>
<tr>
<td>Weekly Theme Reviews</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>10%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grades will be based on a percentage of total points, as follows:

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93-100%</td>
<td>A</td>
</tr>
<tr>
<td>80-82%</td>
<td>B-</td>
</tr>
<tr>
<td>68-69%</td>
<td>D+</td>
</tr>
<tr>
<td>90-92%</td>
<td>A-</td>
</tr>
<tr>
<td>78-79%</td>
<td>C+</td>
</tr>
<tr>
<td>63-67%</td>
<td>D</td>
</tr>
<tr>
<td>88-89%</td>
<td>B+</td>
</tr>
<tr>
<td>73-77%</td>
<td>C</td>
</tr>
<tr>
<td>60-62%</td>
<td>D-</td>
</tr>
<tr>
<td>83-87%</td>
<td>B</td>
</tr>
<tr>
<td>70-72%</td>
<td>C-</td>
</tr>
<tr>
<td><60%</td>
<td>F</td>
</tr>
</tbody>
</table>

Course Assignments

Assignments for this class will promote integrative learning that prepares students for work in the real world. Class activities that involve real world projects, student participation in teaching, and course content evaluation will promote critical thinking, self-evaluation, problem solving, discussion, and debate in student learning.

Group Research Projects

The group research project will give students the opportunity to apply what they learn in this course to the real world. This project is modeled off a course offered through the Odum School of Ecology, at the University of Georgia, titled the “Environmental Practicum.” It has been a hugely successful course in which students work to find solutions to real world environmental problems, by acting as consultants to local “clients.” Not only do students learn much more through “doing real work” than they ever could by studying only theory, but their academic efforts are put to good use in the larger community. This kind of “real world” learning is also being applied at UCLA’s Institute of the Environment (IoE), in which senior undergraduate Environmental Science majors enroll in a year-long Environmental Practicum course (three courses in total) in which they work on environmental problems for participating local clients.

The benefit of assigning such a project in an Honors Collegium course is that it provides the unique opportunity for exemplary students from different majors to collaborate on interdisciplinary solutions to environmental problems (in comparison to environmental major students working together in groups). This fulfills a key goal of the course: for students from all majors to learn how to collaborate on solving current environmental problems. Students will thus be presented with “real-world” environmental problems that will require interdisciplinary problem solving (as opposed to research questions that require only scientific or “environmental” training). Students will be given the option to choose from projects that have been vetted by the course instructor, or to work on approved projects of their own choice.
According to interest, students will divide into groups of three to four, and then work to address the problems/questions put forth by the participating group they choose (e.g., nonprofit organizations, communities, “green” businesses). Examples of potential questions that students might be presented with are outlined below. Consultation with organizations prior to the course (by the instructor) will result in more defined projects that students will be able to complete within the eight week timeframe.

1. **Problem:** Unsustainable residential landscapes waste water and energy, pollute, and provide few ecosystem services.
 Question: “What are the quantifiable environmental and economic benefits of converting traditional landscapes to “ocean friendly gardens,” and how do we use that information to convince more people join the program?”
 Project/Organization: Ocean Friendly Gardens, Surfrider Foundation

2. **Problem:** The overuse of disposable plastics is polluting the ocean and the fish we eat.
 Question: “How many people know about the problem of plastic pollution, and how do we more effectively reach and educate a larger population?”
 Organization: Five Gyres

3. **Problem:** Farmers markets around Los Angeles want to become more sustainable, but they don’t know how (e.g., they generate plastic trash, don’t do much to promote organics, create more local auto traffic, and are too expensive to reach larger populations).
 Question: “What can we do to “green” LA farmers’ markets (specifically Westwood and West LA) and make them more sustainable?
 Business: - Destination Green Events

4. **Problem:** A new biocommerce product that helps conserve Amazon rain forest, Bolivian sustainable wild harvested acai, is little known and difficult to sell on the international market.
 Question: “How do we create a brand for our sustainable product, and how can we change our marketing strategy to sell more product?”
 Project/Community: Organic Wild Harvested Acai Project, Indigenous Community of Porvenir, Bolivia

5. **Problem:** Traditional environmental education curriculum often fails to teach the real kind of environmental literacy that will promote societal change.
 Question: “Which media, as supplementary environmental education curriculum, would be most effective at reaching students in the classroom?”
 Project/Organization: - Environmental Education Forum, SELVA International & UCLA’s EEB Dept.

Student research projects will include literature and background research, ongoing consultation with stakeholders, possible visitation of field sites, consultation with experts, creation of implementation plans and/or materials, and (potentially) initial implementation of the plans. Project conclusion will include final meetings with organization collaborators to present results; presentation of project results to the class; and submission of final reports (minimum 10 pages) that outline the background research, problem addressed, methodology for problem treatment, solutions reached, and implementation strategy for the outlined solution. Additional materials produced for the projects (e.g., logos, photos, pamphlets, media) can supplement this report.
Independent Presentations

Students will also be required to work on one independent project during the quarter. This project will be based on one environmental theme (e.g., climate change, overfishing, biodiversity loss) of the student's choice. Students will be required to research their theme and then present, during class, current understanding of the theme, based on the scientific evidence. Students will have about 30 minutes for their presentations. They will present their research to the class and lead class discussion on the subject. Powerpoints of presentations will be submitted to the instructor. In addition to being evaluated by the instructor, the effectiveness and quality of the presentations will be evaluated by all other students present.

Weekly Theme Reviews

In order to prepare themselves for class discussions, students will be required to read/view listed media before the first session each week. Students will be required to submit weekly reviews summarizing their understanding of that week’s theme. These reviews, to be submitted at the beginning of each week, will help students assess their understanding and opinions of the week’s required readings/viewings, in order to be better prepared for class discussions. These reviews will be short (one page or less), and they should information such as: 1) their understanding of the theme, 2) the science behind the environmental problem, 3) how the theme is relevant to the student personally and to society, 4) critical review of the required media (e.g., are the assertions supported by science?, is the presentation biased?, is the media effective, entertaining, educational?), 5) personal opinions related to the importance of the theme, and 6) ideas for solutions. This assignment will push students to think critically, understand the issues, differentiate science from bias, and personally assess and/or incorporate knowledge learned.

e. Indication of disciplines/majors to which the course might be considered particularly relevant.

Because the goal of this course is to teach students the interdisciplinary nature of environmental issues, the course will not only be relevant to students of all majors, but it will benefit from having a mix of students from a variety of backgrounds and fields.

f. Proposed number of units

5 units

g. Proposed enrollment

Seminar of 15-20

h. Preferred quarter that the course be offered

Flexible

i. Proposed class meeting schedule

Preferably T/Th seminar meeting twice a week, two hours per session; course could be scheduled any time after 9am.
j. Indication of whether or not the course will require TA support
TA support will not be required.

k. Suggestion of whether the course should be upper or lower division
I could be flexible as to what students this course is offered to: either all lower division, all upper division, or a mix of both.

l. A one page Curriculum Vitae
See attached.

EDUCATION
Ph.D., May 2008. Odum School of Ecology, University of Georgia, Ecology
B.A., June 1996. University of California Los Angeles, Geography Department, Geography/Envi Studies

ACADEMIC TEACHING EXPERIENCE
• Lecturer - Department of Ecology and Evolutionary Biology, UCLA (2012 to present)
• Director - Amazon Exchange Program (2009 to present)
 A university study abroad program (in development) in Noel Kempff Mercado National Park, Bolivia, in collaboration with the Five College Consortium, MA.
• Lead Teaching Assistant - Odum School of Ecology, University of Georgia (2006 to 2007)
 Developed and taught ECOL 1000 Lab- The Ecological Basis for Environmental Issues.
• Undergraduate Student Advisor – UCLA Palos Verdes Blue Butterfly (PVB) Project, DFSP San Pedro, CA (1997 to 2002)

PROFESSIONAL EXPERIENCE
• Founder/President - SELVA International, Los Angeles, CA (2008 to present)
• Ecologist - Resource Conservation District of the Santa Monica Mountains, CA (2009 to 2011)
• Project Director - Community-based Podocnemis Turtle Conservation Project, Bolivia (2003 to present)
• Project Manager - Palos Verdes Blue Butterfly (PVB) Project, DFSP, San Pedro, CA (1997 to 2002)
• Partner - Tarweed Native Plants, Chatsworth, CA (2000 to 2002)
• Site Manager - Inti Wara Yassi Wildlife Refuge, Parque Machía, Bolivia (1999 to 2000)
• Land Stewardship Director - Palos Verdes Peninsula Land Conservancy, CA (1998 to 1999)
• Wildlife Biotechnician - Northern Spotted Owl Project, Mount Rainier National Park, WA (1997)
• Researcher - UCLA / UC Irvine collaborative project, CA (1994)

SELECTED PUBLICATIONS

SELECTED GRANTS & CONTRACTS
• The Andrew W. Mellon Foundation (2012). $60,000. Completed.
HC Course Proposal: Understanding Ecology

- Fulbright Grant (2004 to 2005).

SELECTED PROFESSIONAL SERVICE
- IUCN Redlisting Group for South American Freshwater Turtles and Tortoises (2010 to present)
- IUCN Species Survival Commission / Tortoise and Freshwater Turtle Specialist Group (2005 to present)
- Science Chair, Ballona Creek Watershed Task Force (2008 to 2010)
- Malibu Creek Technical Advisory Committee (2008 to 2010)
New Course Proposal

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Honors Collegium 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Understanding Ecology: Finding Interdisciplinary Solutions to Environmental Problems</td>
</tr>
<tr>
<td>Short Title</td>
<td>ECOL & ENVIR</td>
</tr>
<tr>
<td>Units</td>
<td>Fixed: 5</td>
</tr>
<tr>
<td>Grading Basis</td>
<td>Letter grade or Passed/Not Passed</td>
</tr>
<tr>
<td>Instructional Format</td>
<td>Seminar - 4 hours per week</td>
</tr>
<tr>
<td>TIE Code</td>
<td>SEMT - Seminar (Topical) [T]</td>
</tr>
<tr>
<td>GE Requirement</td>
<td>Yes</td>
</tr>
<tr>
<td>Major or Minor Requirement</td>
<td>No</td>
</tr>
<tr>
<td>Requisites</td>
<td>This course is designed for students enrolled in the College Honors Program</td>
</tr>
<tr>
<td>Course Description</td>
<td>This course explores the ecological basis of the planet's most important environmental issues, including global climate change, ocean acidification, biodiversity loss, deforestation, pollution, and declining freshwater resources and fisheries. The class looks at both the hard science and the interdisciplinary solutions (social, political, educational) to environmental problems.</td>
</tr>
</tbody>
</table>

Justification

This is a course designed to be offered in the interdisciplinary series called the Honors Collegium. It is suitable for all majors. With some discussion about balance in the content, it has been approved unanimously by members of the Faculty Advisory Committee for Honors, whose members come from varied disciplines, and by its Chair. The course will be submitted to the GE committee.

Syllabus

File [013AlisonLipmancourseproposal.doc](#) was previously uploaded. You may view the file by clicking on the file name.

Supplemental Information

Grading Structure

- Group research project on "real-life" problem (e.g. unsustainable landscape waste water): 25%
- Individual presentation: 15%
- One-page weekly theme Reviews: 10%
- Written Midterm Exam: 20%
- Written Final Exam: 20%
- Class Participation: 10%

Effective Date

Fall 2013

Instructor

- Name: Alison Lipman
- Title: Lecturer

Quarters Taught

- Fall
- Winter
- Spring
- Summer
<table>
<thead>
<tr>
<th>Routing Help</th>
<th>Name</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G JENNIFER WILSON</td>
<td>gjwilson@college.ucla.edu</td>
</tr>
</tbody>
</table>

ROUTING STATUS

Role: Dean College/School or Designee - Friedmann, Manuela (mfriedmann@college.ucla.edu) - 58510
Status: Pending Action

Role: FEC Chair or Designee - Castillo, Myrna Dee Figurac (mcastillo@college.ucla.edu) - 45040
Status: Returned for Additional Info on 4/23/2013 4:36:41 PM

Changes: No Changes Made
Comments: Routing to Manuela Friedmann for Dean Turner's approval.

Role: Department Chair or Designee - Gurval, Robert A (gurval@humnet.ucla.edu) - 56744
Status: Approved on 4/20/2013 4:30:04 PM

Changes: No Changes Made
Comments: No Comments

Role: Initiator/Submitter - Wilson, G Jennifer (gjwilson@college.ucla.edu) - 51752
Status: Submitted on 4/19/2013 10:03:40 AM

Comments: Initiated a New Course Proposal

[Back to Course List]