General Education Course Information Sheet Please submit this sheet for each proposed course

	Dept. of Integrative Biology & Physiology, Physiological
Department & Course Number	Science 7
	Science & Food: the physical and molecular origins of
Course Title	what we eat
Indicate if Seminar and/or Writing II course	

1 Check the recommended GE foundation area(s) and subgroups(s) for this course

Foundations of the Arts and Humanities

• Literary and Cultural Analysis	
Philosophic and Linguistic Analysis	
• Visual and Performance Arts Analysis and Practice	
Foundations of Society and Culture	
Historical Analysis	
Social Analysis	
Foundations of Scientific Inquiry	
Physical Science	Х
With Laboratory or Demonstration Component must be 5 units (or more)	Х
• Life Science	Х
With Laboratory or Demonstration Component must be 5 units (or more)	X

2. Briefly describe the rationale for assignment to foundation area(s) and subgroup(s) chosen.

This multidisciplinary course demonstrates concepts in the physical and biological sciences using live demonstrations and laboratory exercises through food.

3.	"List faculty member(s) who will serve as instructor (give academic rank):
	Amy Rowat, Assistant Professor

 Do you intend to use graduate student instructors (TAs) in this course?
 Yes
 X
 No

 If yes, please indicate the number of TAs
 1-2

4. Indicate when do you anticipate teaching this course over the next three years:

2010-2011	Fall Enrollment	 Winter Enrollment	 Spring Enrollment	
2011-2012	Fall Enrollment	 Winter Enrollment	 Spring Enrollment	x 50
2012-2013	Fall Enrollment	 Winter Enrollment	 Spring Enrollment	<u>x</u> >50

5. GE Course Units

Is this an *existing* course that has been modified for inclusion in the new GE? Yes _____ No __X If yes, provide a brief explanation of what has changed.

Present Number of Units:

Proposed Number of Units:

6. Please present concise arguments for the GE principles applicable to this course.

General Knowledge	Course will provide general knowledge of concepts in physics, physical chemistry, cell biology, physiology, as well as deeper knowledge of the origins of food: where it comes from and nutritional implications.
Integrative Learning	Using food to teach science is a problem-based learning method that inherently requires students to integrate knowledge from everyday food labels as well as multiple disciplines ranging from physics to biology.
Ethical Implications	Critical thinking about an ordinary topic such as food encourages deeper thought and ethical questioning about where food comes from. Asking critical questions about food labels and advertising will also be incorporated into the class.
Cultural Diversity	Examples of foods from different cultures and cuisines will be used throughout the class; this will promote students from diverse backgrounds to get engaged in learning sciences.
Critical Thinking	Students will use the scientific method to address questions about the physical and molecular origins properties of food. This will incite critical questioning about the media and food propaganda.
Rhetorical Effectiveness	Food is a topic that everyone can relate to, and thus makes it easy to dig into and ask questions about the science of everyday objects.
Problem-solving	Inquiry-based projects will require students to figure out how to answer scientific question about the physical properties of food, to carry out experiments, and to complete a written proposal and presentation.
Library & Information Literacy	Final projects will require scientific literacy, and the ability to seek out, to assimilate, and to present information.
(A) STUDENT CONTA	ACT PER WEEK (if not applicable write N/A)

1.	Lecture:	3	(hours)
2.	Discussion Section:		(hours)
3.	Labs: (includes discussion)	2.5	(hours)
4.	Experiential (service learning, internships, other):		(hours)
5.	Field Trips:		(hours)
) TO	TAL Student Contact Per Week	5.5	(HOURS)

(A) TOTAL Student Contact Per Week

1.	General Review & Preparation:	1	(hours)
2.	Reading	1	(hours)
3.	Group Projects:	2	(hours)
4.	Preparation for Quizzes & Exams:	2	(hours)
5.	Information Literacy Exercises:		(hours)
6.	Written Assignments:	3	(hours)
7.	Research Activity:	2	(hours)
) T (OTAL Out-of-class time per week	11	(HOURS)
RAI	ND TOTAL (A) + (B) must equal at least 15 hours/week	16.5	(HOURS)

Science & Food: The Molecular and Physical Origins of What We Eat General Education Course at UCLA, Spring 2012 Physiological Science 7 Instructor: Amy Rowat

Theme		Week Date	Concept	Lecture Topics	Lab	Chef	At the end of this week, students should understand:
Origin s , Soil, Environment	Molecules of food	1 Mon Apr 2 Wed Apr 4 Fri Apr 6	Length & Energy scales	Intro to course/Intro to Proteins, fat, carbohydrates Length scales, energy scales: from sun to individual bonds Manipulating molecules in dessert	length scales, energy scales, calories	Sherry Yard, Spago (to be confirmed)	 how big molecules are; energy scales of covalent bond, non-covalent bond; what is a calorie types of molecules in food; caloric contents of foods
	Molecules: from soil to plants	2 Mon Apr 9 Wed Apr 1 Fri Apr 13		How plants grow: uptake of soil nutrients, osmosis Conventional vs organic; Molecular composition; microbes in soil Growing veggies, biodynamic agriculture	measure , diffusion coefficient	David Kinch/Manresa, Love Apple Farms	 how fast; concept of diffusion; use diffusion equation to calculate timescales, lengthscales impact on food in soil
	Why carrots taste sweeter in the winter	3 Mon Apr 16 Wed Apr 18 Fri Apr 20		phase transitions why carrots taste sweeter in winter Manipulating the soil/growing conditions	sorbet; Freezing pt depression	Dan Barber, Blue Hill/Stone Barns (to be confirmed)	 concept of phase transition; freezing point depression; boiling point elevation concepts in physiology: thermal, pressure adaptation applications in food & cooking: making sorbet, pressure cooker
Food Texture	Milk: from breast to cheese	4 Mon Apr 2 Wed Apr 2 Fri Apr 27	5	soft materials: mechanisms of self- assembly: hydrophobic effect, electrostatics milk: from breast to cheese bread: protein networks; plant cell wall	milk/cheese	твр	 mechanisms for self-assembly of molecules; relevant energy scales self-organizing structures in physiology & food:membranes, protein networks
	Why lettuce is crispy	Mon Apr 30 5 Wed May 2 Fri May 4		Force, Pressure Why lettuce is crispy, plant texture		TBD	 concept of force; concept of pressure; how to estimate pressure role of pressure in plants; food texture
	Meat texture: pig ears to sweetbreads	6 Mon May 7 Wed May 9 Fri May 11		Elasticity: how to measure, molecular level; chemical & physical gels Meat: link to physiology, color (dark vs light)	measure bite force/ force deformation of meat/jello tenderizing	Jon & Vinny, Animal	 concept of elasticity; how to measure elasticity; how to calculate mesh size role of stiffness in physiology; cell and tissue integrity; relationship to meat
Molecules for texture and flavor	Blood is thicker than water	7 Mon May 1	Viscosity	Viscosity: how to measure, molecular level	measure viscosity of solutions with guar gum role of thickeners and gelling		1. concept of viscosity; how to measure viscosity; explain what this means at the molecular level
		Wed May 1 Fri May 18		blood is thicker than water; coagulants use in physiology, food	agents in plants, seeds, fish eggs	TBD	2. manipulating viscosity in vivo and in food; thickeners
	Microbes in food	8 Mon May 2 Wed May 2 Fri May 25	3	fermentation: effects on texture, flavor	Final Projects	David Chang, Momofuku	 what is an exponential; exponential growth of microbial populations role of microbes in food production and flavor
	Physiology of Taste		Binding	protein binding; physiology of taste umami; glutamate in food; MSG	Final Projects	Homoraka -	 concept of molecular binding affinity; how to quantitatively describe this how to apply this to understand taste; molecules in taste; umami

	Umami (burger)	Adam Fleischman, Umami Burger	
Review 1	LO Mon Jun 4 Review Wed Jun 6	Bill Yosses, White	At the end of the this course, students should generally: 1. be able to use equations for qualitative reasoning
	Fri Jun 8 Science Fair/ Presentations		2. understand units, dimensional analysis 3. be able to design an experiment to answer a scientific question
Final Exam	Week of June 10-15		

Science & Food: The Physical and Molecular Origins of What We Eat

- **Summary:** What makes lettuce crispy and some cuts of meat chewier than others? This course will explore the origins of food texture and flavor. We will use concepts in the physical sciences to explain macroscopic properties such as elasticity and phase behavior, as well as the physiological role of food molecules in the plants and animals we eat. Guests in the classroom will include chefs and farmers who will illustrate practical applications and manipulations of food texture and flavor.
- Instructor: Amy Rowat, PhD (rowat@ucla.edu, x54026) Dept of Integrative Biology & Physiology
- **Course:** Physiological Science 7
- **Format**: Classroom lectures: 3 hours per week; Laboratory Investigation & Discussion: 2.5 hours per week. Designed for non-science students.

The 2.5-hour section will include both laboratory exercise and discussion time. Ordinarily, the first hour and a half will consist of a laboratory, which will both illustrate the main scientific concepts of the week and culminate in a weekly recipe, which you will both make and eat! Recipes will range from homemade cheese to umami burgers. The last half hour of section will be devoted to addressing questions related to homework problems and the scientific concepts of the week. Sections/labs will take place in a food-grade laboratory in the Life Sciences Building. Write-ups with sections will be combined with the course homework. Each week there will be at least one homework problem that builds on what you did in section and lab.

- Enrollment: Capped at 50 students.
- **Quarter:** Spring 2012
- Units: 5
- **Grading:** Letter grade
- **Prereqs**: High school math, chemistry, physics.
- Readings: "On Food & Cooking", McGee H, Scribner, 2004

McGee is a classic text that gives a general overview of the scientific concepts underlying food and cooking. More specific texts covering physiology, as well as scientific aspects of cooking, are listed below. Each week there will be assigned readings from *On Food and Cooking* as well as supplementary readings to cover additional aspects of science and cooking related to the topic of the week from the following texts:

- 1. *Human Physiology*, 6th ed., Sherwood L, Thomson Brooks/Cole, 2007.
- 2. *Physiology of Taste*, Brillat-Savarin, JA, translated by Fisher MFK, Counterpoint, 1949.

Additional resources that may be useful for Final Projects include:

Other books on science and cooking:

- 1. Cookwise, Corriher S
- 2. The Curious Cook, McGee H
- 3. Kitchen Mysteries: Revealing the Science of Food, This H
- 4. The Science of Chocolate, Beckett ST
- 5. *The Science of Ice Cream*, Clarke C
- 6. Ratio: The simple codes behind the craft of everyday cooking, Ruhlman M
- 7. The Science of Cooking, Barham P

Books on physiology:

- 1. Seeley's Essentials of Anatomy and Physiology, 7 th. ed., VanPutte C et al
- 2. Eckert's Animal Physiology, 5th ed., Randall DJ et al
- 3. Bones: structure and mechanics, Currey JD
- 4. Comparative Biomechanics, Vogel S
- 5. Structural Biomaterials, Vincent JM
- 6. Biomechanics: Structures and Systems, Biewener A & Full B
- **Assignment:** Weekly problem sets will be due in class. You are allowed to drop your lowest homework during the semester.
- **Exams:** There will be an in-class midterm exam. A final exam will be given during final exam period.

Grading:	Weekly Assignments	20%
	Section and lab participation	20%
	Midterm examination	15%
	Final Project	25%
	Final examination	20%

Important Note: The course involves the preparation and (optional) consumption of food. If you have specific food allergies or needs, be in touch with the instructor to discuss arrangements that might be appropriate.

Final Project: Will involve investigating a question of interest, with clearly stated scientific objective and motivation. Projects will be evaluated on the basis of scientific approach, experiments done with proper controls, data and quantitative analysis, as well as thoughtfulness and interpretation. As a rule of thumb, you should present at least one graph of your data. As in scientific research, more than one approach or type of experiment is valued.

Projects can be conducted in student teams of 1-3 people per team. Project proposals must be submitted and approved prior to commencing project research.

Projects will be evaluated in terms of both written submission and presentation. There will also be a science fair/ oral presentations.

Examples of Project Ideas:

*How to minimize sticking of the membrane to a hard-boiled egg?

*Pig ear elasticity and ways to tenderize it

*Ikijime: fish preparation and role of the nervous system

*Scientific misconceptions – Myth or Reality? Choose a topic that is described in the popular media (Probiotics; Raw Enzymes; Sugar and how it impacts your health), and explore the scientific evidence.

Lecture Schedule

	Weekly Theme	Scientific Concepts	Physiology Concepts	Demo/Lab
1	The Molecules of food: [Readings: On Food and Cooking "The four basic food molecules" pgs. 792-809; "A chemistry primer" pgs. 811-816]	Basic units of food: length and energy scales. Proteins, fats, carbohydrates, nucleic acids. From sun to individual bonds (intermolecular and intramolecular interactions); what is a calorie? Structure of polymers; Carbohydrates are polymers of sugars. Proteins are polymers of amino acids. Enzymes break down polymers into smaller units.	Role of molecules in physiology	DEMO: Manipulating molecules in dessert.
2	Molecules: from soil to plants [Readings: On Food and Cooking "Edible plants" pgs. 243-255]	Diffusion. Osmosis. Timescales for growth. Soil texture and composition.	Plants uptake nutrients; soil and growth conditions impact the plant; conventional vs organic	DEMO: measure diffusion coefficient
3	Why carrots taste sweeter in the winter [Readings: On Food and Cooking "The phases of matter" pgs. 816-818]	Phase behavior . Molecular structure determines phase behavior. Fluid and solid states; phase diagrams for "simple materials" water, ethanol; entropy, energy, enthalpy; Effects in physiology; homeostasis; phase transitions in food & cooking (boiling point elevation: pressure cooking)	Phase transitions in organisms: molecular composition to maintain homeostasis. Pressure & temperature adaptation; Effect of free-range diets and environment on lipid composition (e.g. Iberico pig is rich in omega- 3 fatty acids)	LAB: fat melting temperatures with different compositions; sorbet freezing depends on % sugar
4	Milk: from breast to cheese [Readings: On Food and Cooking "Milk and dairy products" pgs. 16-21, 55-67]	Self Assembling Structures. Mechanisms of self-assembly in soft materials: hydrophobic effect, electrostatics. Relevant energy scales; Protein folding & membrane assembly; Interactions between complex food molecules. Electrostatics is	Lipid, protein, & carbohydrate networks for cellular organization (bone, muscle) and in food (milk, cheese, &	LAB: Housemade cheese; quantitative image analysis of milk components, coagulation DEMO: bread

5	Why lettuce is crispy [Readings: On Food and Cooking, "The composition and quality of fruits and vegetables" pgs. 261-266]	the most important and controllable physical interaction. Effects of salt and pH. Protein denaturation. Pressure. Force, pressure. Osmotic pressure.	bread); effect of electrostatics on structure & mechanics of collagen; protein aggregation gone awry: amyloids Plant, vegetable texture. Pickling, dehydrating.	making. DEMO/LAB: measure vacuole size as function of osmolarity, determine pressure.
6	MeattextureandElasticity[Readings: On Food and Cooking, "Meat" pgs. 149-154]	Elasticity : how squishy or stiff a material behaves. Moduli to describe elasticity. How to measure elasticity and what this means at the microscopic level. Elasticity regulated by the organization of material. Chemical gels (e.g. using transglutaminase); physical gels (e.g. alginate, gelatin, eggs)	Muscle structure and elasticity and the role of physiology; Tenderizers (from pounding to Kobe beef massage); common gels, their role in physiology & food: gelatin, collagen	LAB: mechanical properties of cartilage (pig ear); effect of enzymes; simple elasticity measurements on gelatin DEMO: measure bite force
7	Blood is thicker than water: Viscosity [Readings: On Food and Cooking, "Sauces", pgs. 591-625, optional: 582- 590]	Viscosity: how easily a material flows. Viscosity regulated by the organization of material, and can be manipulated using food thickeners and additives. Viscoelastic materials.	Biological fluids: blood, clotting, and the role of transglutaminase from physiology to haute cuisine; mucopolysacchar ides. Role in physiology from seeds to fish eggs; origins of gelatin; pectin in plant walls; alginate and agar in seaweeds	LAB: Experimental methods to measure viscosity; Transglutminase effect on viscosity of protein solution; measure viscosities
8	Microbes in Food. [Readings: On Food and Cooking, "Yeast" pgs. 531-532; "Making yogurt" pgs. 48-49; "Fermentation and pickling" pgs. 291-295]	Exponentials : Describing growth of bacterial population. Science of fermentation.	Role of microbes in food production, flavor and texture.	DEMO/LAB: count colonies during bacterial growth.

9	Physiology of Taste. [Readings: The Physiology of Taste, "On Taste" pgs. 34-48; On Food and Cooking, "Umami" pg. 342; "Amino acids and peptides" pgs. 806-807; Human Physiology "Chemical senses: taste and smell" pgs. 221-227.	Binding affinity : Protein binding. Chemical reactions, and quantifying reaction rates.	Sensory perception. Taste profiles, the role of taste receptors, and umami; Quantitative analysis of glutamate concentrations in foods	
10	Review			Lab: FINAL PROJECTS.
11	Final Exam			

New Course Proposal

	Physiological Science Science and Food: T of What We Eat	ce 7 The Physical and Molecular Origins
Course Number	Physiological Science 7	
<u>Title</u>	Science and Food: The Phys	sical and Molecular Origins of What We Eat
Short Title	SCIENCE AND FOOD	
Units	Fixed: 5	
Grading Basis	Letter grade only	
Instructional Format	Lecture - 3 hours per week Laboratory - 2.5 hours per	
TIE Code	LECS - Lecture (Plus Supple	ementary Activity) [T]
GE Requirement	Yes	
<u>Major or Minor</u> <u>Requirement</u>		
Requisites	High school math, chemistr	ry, and physics
Course Description	This course will explore the concepts in the physical sci	and some cuts of meat chewier than others? e origins of food texture and flavor. We will use iences to explain macroscopic properties such avior, as well as the physiological role of food animals we eat.
Justification	becoming increasingly impo	n and its effects on physiological processes is ortant in today's world. This course will provide se prudent dietary decisions based on the siological effects on health.
<u>Syllabus</u>	File Phy Sci 7 Syllabus.docx was previo	usly uploaded. You may view the file by clicking on the file name.
Supplemental Information		
Grading Structure	Weekly Assignments: 20% Laboratory Assignments: 2 Midterm Exam: 15% Final Project: 25% Final Exam: 20%	0%
Effective Date	Spring 2012	
Instructor	Name Amy Rowat	Title Assistant Professor
Quarters Taught	Fall Winter Spring	Summer
Department	Integrative Biology and Ph	ysiology
Contact	Name	E-mail
Routing Help	MICHAEL CARR	mcarr@physci.ucla.edu

ROUTING STATUS

D 1	Degistraria Cabaduling Office
	Registrar's Scheduling Office
Status:	Pending Action
Dele	FEC School Coordinator - Soh, Michael Young (msoh@college.ucla.edu) - 65282
	Returned for Additional Info on 8/26/2011 10:59:28 AM
•	No Changes Made
Comments:	Routing to Registrar's Office
Role:	FEC Chair or Designee - Knapp, Raymond L (knapp@humnet.ucla.edu) - 62278
	Approved on 8/25/2011 8:34:43 AM
	No Changes Made
Comments:	
oonnonto.	
Role:	L&S FEC Coordinator - Soh, Michael Young (msoh@college.ucla.edu) - 65282
Status:	Returned for Additional Info on 8/23/2011 5:01:10 PM
Changes:	No Changes Made
•	Routing to FEC Chair Ray Knapp for approval
Role:	Dean College/School or Designee - Hwang, Sandra Se Mi (shwang@college.ucla.edu) - 54673
Status:	Approved on 8/23/2011 4:48:27 PM
Changes:	No Changes Made
Comments:	No Comments
	L&S FEC Coordinator - Soh, Michael Young (msoh@college.ucla.edu) - 65282
Status:	Returned for Additional Info on 8/11/2011 2:59:17 PM
•	No Changes Made
Comments:	Routing to Sandra Hwang acting on behalf of Dean Sork for approval
	Department Chair or Designee - Carr, Michael (mcarr@physci.ucla.edu) - 53891
	Approved on 8/9/2011 1:48:38 PM
-	No Changes Made
Comments:	Approved for Barney Schlinger, Chair, Integrative Biology & Physiology Dept.
Role:	Initiator/Submitter - Carr, Michael (mcarr@physci.ucla.edu) - 53891
	Submitted on 8/9/2011 1:47:19 PM
	Initiated a New Course Proposal

Back to Course List

 Main Menu
 Inventory
 Reports
 Help
 Exit

 Registrar's Office
 MyUCLA
 SRWeb

Comments or questions? Contact the Registrar's Office at <u>cims@registrar.ucla.edu</u> or (310) 206-7045