General Education Course Information Sheet Please submit this sheet for each proposed course

Department & Course Number	Math 98T
Course Title	Boundaries, Edges, and Singularities: Exploring Mathematical
	Image Segmentation
Indicate if Seminar and/or Writing II course	CUTF-Seminar

1 Check the recommended GE foundation area(s) and subgroups(s) for this course

Foundations of the Arts and Humanities	
Literary and Cultural Analysis	
Philosophic and Linguistic Analysis	Х
Visual and Performance Arts Analysis and Practice	Х
Foundations of Society and Culture	
Historical Analysis	Х
Social Analysis	
Foundations of Scientific Inquiry	
Physical Science	Х
With Laboratory or Demonstration Component must be 5 units (or more)	
Life Science	X
With Laboratory or Demonstration Component must be 5 units (or more)	

2. Briefly describe the rationale for assignment to foundation area(s) and subgroup(s) chosen.

The segmentation problem is an open and difficult problem in image processing. Researchers use tools from physics, mathematics, art, and human perception to understand and to provide solutions to this problem. The goal of the course will be to examine and critically analyze the methods and their motivations from a scientific, mathematical, historical, and visual perceptive.

3. "List faculty member(s) who will serve as instructor (give academic rank): Hayden Schaeffer, Teaching Fellow. Luminita Vese, Professor.

Do you intend to use graduate student instructors (TAs) in this course? Yes No X

If yes, please indicate the number of TAs

3. Indicate when do you anticipate teaching this course over the next three years:

2011-2012	Fall Enrollment	Winter Enrollment	X 12	Spring Enrollment		
3. GE Course Units Is this an <i>existing</i>	s course that has been modified	l for inclusion i	n the new GE	? Yes	No	Х
If yes, provide a br	ief explanation of what has c	hanged.				
Present Number of	E Units:	Prop	osed Number	of Units:	5	

3. Please present concise arguments for the GE principles applicable to this course.

-	
General Knowledge	Students will learn to translate what they see in the world into the language of mathematics. For example, objects in an image can be thought of as geometric shapes in the plane. The course will unify theory, mathematics, intuition, and our perception of the visual world.
Integrative Learning	Students will use theories from physics and methods from mathematics and statistics to describe art and images. They will also study applications in medicine, engineering, computer science, and biology.
Ethical Implications	Students will have to critically analyze the role that automated methods play in medical decisions, defense strategies, etc.
Cultural Diversity	The course will include historical perspectives on theory and research, including contributions from minority and non-western researchers.
Critical Thinking	The course will have a strong emphasis on critical thinking to evaluate and analyze theories and methods.
Rhetorical Effectiveness	The course will have a strong emphasis on both the presentation and discussion of technical concepts for a general audiencetalking about mathematics rather than using symbols and numbers.
Problem-solving	This will be addressed through class discussions and small writing assignments.
Library & Information Literacy	Their final paper will involve both extensive library and internet research.

(A) STUDENT CONTACT PER WEEK (if not applicable write N/A)		
1. Lecture:	3	(hours)
2. Discussion Section:	N/A	(hours)
3. Labs:	N/A	(hours)
4. Experiential (service learning, internships, other):	N/A	(hours)
5. Field Trips:	1 (one time)	(hours)
(A) TOTAL Student Contact Per Week	3	(HOURS)

(B) OUT-OF-CLASS HOURS PER WEEK (if not applicable write N/A)

1.	General Review & Preparation:	2	(hours)
2.	Reading	5	(hours)
3.	Group Projects:	N/A	(hours)
4.	Preparation for Quizzes & Exams:	N/A	(hours)
5.	Information Literacy Exercises:	.5	(hours)
6. Written Assignments:		3	(hours)
7. Research Activity:		1.5	(hours)
(B) T(OTAL Out-of-class time per week	12	(HOURS)
GRAN	ND TOTAL (A) + (B) must equal at least 15 hours/week	15	(HOURS)

Math 98T

Boundaries, Edges, and Singularities: Exploring Mathematical Image Segmentation Instructor: Hayden Schaeffer

Course Description

In this seminar we will focus on **segmentation** -- how to partition an image into its basic objects. One of the most challenging problems computationally, yet one of the easiest for humans: how to partition an image into its basic objects. For example, when we look at Georges Seurat's "A Sunday Afternoon on the Island of La Grande Jatte," we see different colored umbrellas, an assortment of hats, people of different shapes and sizes, boats of varying scales, trees in the foreground and background, etc. Our minds analyze all of this in fractions of a second. When wanting to automate a process to do this on a computer, what quantities distinguish these objects from one another without being specific to the image itself? Our intuition says contrast or shape, but these are not always the correct measures.

This course will answer these questions and more by using mathematical intuition to help define the problem and analyze ways to solve it, without going into the rigorous details. The students will learn the basics of the methods used today, through discussions and research. Since most of the methods we will discuss are measured using the "Eye-ball norm" (how they look to the human eye), the students will decide for themselves the pros and cons of the method by examining real world examples. Applications include but are certainly not limited to: Medical imaging (for location and diagnosis), satellite and aerial object detection (roads and buildings), fingerprint and face recognition, machine vision, etc. We will also investigate the connection of image segmentation to art, psychology, fracture mechanics, physics, and even human nature.

This course is self-contained, all necessary "tools" will be provided.

Objectives:

By the end of the course (or during), you will:

- Be able to express mathematical concepts in your writing
- "Translate" nature into mathematics (or quantitatively measurable terms)
- Be able to critically evaluate imaging techniques
- Give a formal presentation
- Organize/plan a project
- Investigate cutting-edge material
- Learn effective team-working skills

• Learn efficient editing skills

Grading:

This class is grade only. Your grade will be made up of the following:

Discussions	20
Presentation	10
Short Write Ups (4)	20
Final Project	50
TOTAL	100

Discussions: You will be graded on active listening, engaging with the various topics, and participation.

Presentation: During week 10 you will give a short (5-10 min) explanation of your model to the class. You will be graded on verbal and non-verbal effectiveness, completeness, organization, and visual aids.

Short Write Ups: You will be asked to write up some of your thoughts before class (1-2 pages). You will be graded on your organization, language, length, and content. (5 points for each of the 4 write ups = 20).

Final Project:

This is a big part of your grade! You will apply the methodology in class to a problem you make up. For example, modeling the path one would take to walk through a crowd of people (to be discussed in class). The model does not have to be perfect, but it has to be well justified using the theory from the course. The final project will be made up of the following components:

Meet with me to discuss ideas	1
Write a research outline/schedule	5
Make a model	1
Paper Outline	5
Paper Draft	10
Final Paper	28
TOTAL	50

See attached rubrics for more detail. The grades will be A=90-100%, B=80-89%, etc.

Course Outline:

The topics, activities, assignments, and reading are listed by week. The reading is due before the class, unless otherwise stated. Assignments are due by Thursday before class (by email).

Week 1: Introduction (January 10 and 12)

Topics	 Introduction to Imaging and The Segmentation Problem Digital Imaging Grey vs. Color Images Psychology of Visual Perception
	 What is applied Math: Math vs. Physics vs. Experimental Mathematics?
Questions	 What is an edge, boundary, contour, etc? What is the difference between edges and boundaries?
Experiment	By hand segmentation
Assignments	 Short Write Up 1: Take a photo using a digital camera (a phone is ok) and describe the differences you see in the photo from reality.
Readings	 "The Unreasonable effectiveness of mathematics" by RW Hamming "Experimental Mathematics: A Discussion" by Borwein, Borwein, Girgensohn, Parnes. Chapter 1 of "Digital Image Processing" by Gonzalez and Woods Parts of "Vision: A Computational Investigation into the Human Representation and Processing of Visual Information" Images from "La Grammaire Du Voir" by Kanizsa Handout on Gestalt theory from psychology

Week 2 Part	1: Degradation (January 17)
Topics	 How to read math papers! (a quick tutorial) Noise, blur, and missing data What causes them? How do we model them?
 How do we model them? Questions What makes up an image? What effect does degradation have to the image and the edges? What do we do to account for them in our own mind? What do you think is done in our own mind to reconstruct a corrupted image? 	
Part 2: Regu	Tarity/Smoothing (January 19)

Topics	 Piece-wise Constant (P) Harmonic, Piece-wise Elliptic (H¹) Bounded Variation (BV)
Questions	 What regularity level is appropriate for an image and why? (with actual data) What are objects in the real world that reside in these spaces?
Experiment	Computer Lab Trip (1/2 class). See these spaces in action! No programming background needed.
Assignments	• Short Write Up 2: What effect does degradation have on the edges of an image?
Readings	 Chapter 2 of "Digital Image Processing" by Gonzalez and Woods Corresponding Chapter in the Course Reader

Week 3 Part	1: Basic Edge Detection (January 24)
Topics	 Geometrical structures in images: Points, Lines, Edge Thresholding Concavity (Mathematical) Singularities
Questions	 What are quantitative ways to measure edges? What is shadowing and its effect on edges? How do noise and blur effect edges? How does missing data effect edges?
Part 2: Curv	res (January 26)
Topics	 Properties: Length, Curvature, Elasticity, Weak notations, Fractals, Hausdorff Measure, Hausdorff Dimension Geodesics Level Set method
Questions	 How curvy is a curve? What defines a curve? What happens to a curve if you remove a finite number of points? Connection to Edges: Classical Length vs. Hausdorff Measure
Assignments	 If you haven't meet with me, schedule a meeting or stop by during office hours Outline of Schedule due

Readings	•	Class Handout					
	•	Corresponding	Chapter	in	the	Course	Reader

Week 4: Moti February 2)	on of Curves and Surfaces (January 31 and
Topics	• Mean Curvature Flow
	 Heat Equation with Connections to Brownian motion, harmonics, minimal surfaces Frequencies and Fourier Analysis
Questions	 What do you predict will be the minimal structures?
	 Do weak notations of geometry appear in real life?
Experiments	• Bubble Lab!
	 Hearing the shape of a drum
Assignments	 Short Write Up 3: Write about the differences between your predicted minimal shapes and the ones from class.
Readings	• Corresponding Chapter in the Course Reader

Week 5: Sna	kes and Chan-Vese (February 7 and 9)
Topics	 Snakes model K-means and Chan-Vese (Piece-wise Constant) Geodesic Active Contours Applications in Medical Imaging, Military, Astronomy
Questions	 Can you characterize the solutions? What are the core differences between these models? What could applications be and why? (we will go over many applications in class)
Assignments	 Short Write Up 4: Pick one application of segmentation and discuss the benefit of mathematical modeling.
Readings	 Corresponding Chapter in the Course Reader Look over the papers: "Snakes: Active Contour Model," "Active Contours without edges," and "Geodesic Active Contours" Introduction of Chapter 4 of "Mathematical Problem in Image Processing" by Aubert and Kornprobst.

Week 6 and 7 23)	: Mumford-Shah Functional (February 14, 16, 21
Topics	 The Energy functional itself Ambrosio-Tortorelli approximation Chan-Vese (Piece-wise smooth) Schaeffer-Vese The artist problem Applications in Camouflage Detection
Questions	 What are the benefits of the various models? Which models are appropriate for the various applications: Medical Imaging, Astronomy
Assignments	• A finalized Model and paper outline
Readings	 Look over: "A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model" by Chan and Vese Look over: "Open Curve Active Contours" by Schaeffer and Vese Corresponding Chapter in Course Reader

Week 8: Co 28 and Marc	ntinuation of Week 8 with Related models (February h 1)
Topics	ContinuationGoat ModelGeodesic Goat
Questions	Continuation of last weekWhy goats?
Assignments	 Draft of the paper by the beginning of 9th week (if not earlier)
Readings	 Look over: "Open Curve Active Contours" by Schaeffer and Vese

Week 9 and 1	0: Additional topics (March 6,8, 13 and 15)
Topics	 TV-MS Texture Non-locality High-order Curve evolution Connections to Fracture Mechanics and Fluid Interfaces
Questions	TBA

Assignments	 Final Paper due by end of the 10th week (March 16th)
	 Prepare Presentations (pick someone to practice with)
Readings	TBA
In Class Activity	 Writing workshop: You will be put in groups to read and edit your drafts. Attach all comments to the final paper. Presentations

Reading List:

Many of these readings will be on the website:

- 1. The course reader
- 2. "The Unreasonable effectiveness of mathematics" by RW Hamming
- 3. "Experimental Mathematics: A Discussion" by Borwein Borwein, Girgensohn, Parnes.
- 4. "Digital Image Processing" by Gonzalez and Woods
- 5. Mathematical Problem in Image Processing" by Aubert and Kornprobst. (Online)
- 6. "Vision: A Computational Investigation into the Human Representation and Processing of Visual Information"
- 7. Images from "La Grammaire Du Voir" by Kanizsa
- 8. "Open Curve Active Contours" by Schaeffer and Vese
- 9. "Snakes: Active Contour Model"
- 10. "Active Contours without edges"
- 11. "Geodesic Active Contours"
- 12."A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model" by Chan and Vese

and more.

Changes	TIE Code		
Commonts:	Corrected title.		
connents.			
Role:	Registrar's Office - Hennig, Leann Jean (Ihennig@registrar.ucla.edu) - 56704		
Status:	Returned for Additional Info on 6/28/2011 10:24:15 AM		
Changes:	Title, TIE Code, Discontinue Date		
Comments:	Corrected title per Cathie 6-28-11		
Role:	Registrar's Scheduling Office - Hennig, Leann Jean (Ihennig@registrar.ucla.edu) - 56704		
Status:	Added to SRS on 6/28/2011 10:18:03 AM		
Changes:	No Changes Made		
Comments:	Reroute to Leann to correct title.		
Role:	Registrar's Publications Office - Hennig, Leann Jean (Ihennig@registrar.ucla.edu) - 56704		
Status:	Added to SRS on 5/25/2011 11:24:58 AM		
Changes:	Title, Description		
Comments:	Edited course description into official version; corrected title.		
Role:	Registrar's Scheduling Office - Bartholomew, Janet Gosser (jbartholomew@registrar.ucla.edu) - 51441		
Status:	Added to SRS on 5/20/2011 11:21:07 AM		
Changes:	Short Title		
Comments:	Added a short title.		
Pole	FEC School Coordinator - Soh, Michael Young (msoh@college.ucla.edu) - 65282		
Status:	Returned for Additional Info on 5/19/2011 11:06:27 AM		
Changes:	No Changes Made		
Commonts:	Routing to Registrar's Office		
connents.			
Role:	FEC Chair or Designee - Knapp, Raymond L (knapp@humnet.ucla.edu) - 62278		
Status:	Approved on 5/19/2011 7:41:42 AM		
Changes:	No Changes Made		
Comments:	No Comments		
Role:	L&S FEC Coordinator - Soh, Michael Young (msoh@college.ucla.edu) - 65282		
Status:	Returned for Additional Info on 5/18/2011 5:00:48 PM		
Changes:	No Changes Made		
Comments:	Routing to FEC Chair Ray Knapp for approval		
Role:	Approved on E (12/2011 4:00:21 PM		
Status:			
Changes:	No unanges Made		
Comments:	on benair of Professor Kathieen Komar, chair, CUTF Faculty Advisory Committee		
Dolor	Initiator/Submitter - Gentile, Catherine (coentile@oid.ucla.edu) - 68998		
Rule:			
Statuce	Submitted on 5/13/2011 4:08:31 PM		

Comments: Initiated a New Course Proposal

 Main Menu
 Inventory
 Reports
 Help
 Exit

 Registrar's Office
 MyUCLA
 SRWeb

Comments or questions? Contact the Registrar's Office at <u>cims@registrar.ucla.edu</u> or (310) 206-7045